391 research outputs found
Running modifications and reducing injury risk
Evidence suggests that no one foot strike style can be expected to decrease injury risk in all runners, and that switching foot strike patterns can have unintended consequences. Using a shorter stride length, however, can be an effective alternative for some runners
Time Series Analysis: The Cross-Correlation Function
The concept of cross-correlation has been developed in two distinct fields: signal processing and statistics. In the area of signal processing, the cross-correlation function can be used to transform one or more signals so that they can be viewed with an altered perspective. For instance, cross-correlation functions can be used to produce plots that make it easier to identify hidden signals within the data. Cross-correlation functions provide the basis for many more sophisticated signal-processing procedures as well. Digital imaging techniques also rely heavily on cross-correlation procedures, but these methods are not covered in the chapter. In the realm of statistics, cross-correlation functions provide a measure of association between signals. The Pearson product-moment correlation coefficient is simply a normalized version of a cross-correlation. When two times series data sets are cross-correlated, a measure of temporal similarity is achieved. The cross-correlation function in its simplest form is easy to use and quiet intuitive. This chapter builds on simple cross-correlation procedures to illustrate the wide variety of uses they have in the field of biomechanics and to give the reader an intuitive feel for some more complicated analysis procedures. Concepts from both signal processing and statistics are discussed, and the procedures are applied to several practical problems
Femoral Neck Stress in Older Adults During Stair Ascent and Descent
A detailed understanding of the hip loading environment is needed to help prevent hip fractures, minimize hip pain, rehabilitate hip injuries, and design osteogenic exercises for the hip. The purpose of this study was to compare femoral neck stress during stair ascent and descent and to identify the contribution of muscles and reaction forces to the stress environment in mature adult subjects (n = 17; age: 50–65 y). Motion analysis and inverse dynamics were combined with musculoskeletal modeling and optimization, then used as input to an elliptical femoral neck cross-sectional model to estimate femoral neck stress. Peak stress values at the 2 peaks of the bimodal stress curves (stress vs time plot) were compared between stair ascent and descent. Stair ascent had greater compressive stress than descent during the first peak at the anterior (ascent: −18.0 [7.9] MPa, descent: −12.9 [5.4] MPa, P \u3c .001) and posterior (ascent: −34.4 [10.9] MPa, descent: −27.8 [10.1] MPa, P \u3c .001) aspects of the femoral neck cross section. Stair descent had greater tensile stress during both peaks at the superior aspect (ascent: 1.3 [7.0] MPa, descent: 24.8 [9.7] MPa, peak 1: P \u3c .001; ascent: 15.7 [6.1] MPa, descent: 18.0 [8.4] MPa, peak 2: P = .03) and greater compressive stress during the second peak at the inferior aspect (ascent: −43.8 [9.7] MPa, descent: −51.1 [14.3] MPa, P = .004). Understanding this information can provide a more comprehensive view of bone loading at the femoral neck for older population
MUSCULOSKELETAL LOADING AND IMPLICATIONS FOR INJURY
There are numerous variables used to assess musculoskeletal loading during human movement. This presentation will examine ground reaction forces, segment accelerations, joint contact forces and internal bone stresses and strains. I will cover implications for injury assessment, subtleties of interpretation, benefits and drawbacks of each these methods
The effects of postseason break on knee biomechanics and lower extremity EMG in a stop-jump task: implications for ACL injury
The effects of training on biomechanical risk factors for anterior cruciate ligament (ACL) injuries have been investigated, but the effects of detraining have received little attention. The purpose of this study was to evaluate the effects of a one-month postseason break on knee biomechanics and lower extremity electromyography (EMG) during a stop-jump task. A postseason break is the phase between two seasons when no regular training routines are performed. Twelve NCAA female volleyball players participated in two stop-jump tests before and after the postseason break. Knee kinematics, kinetics, quadriceps EMG, and hamstring EMG were assessed. After one month of postseason break, the players demonstrated significantly decreased jump height, decreased initial knee flexion angle, decreased knee flexion angle at peak anterior tibial resultant force, decreased prelanding vastus lateralis EMG, and decreased prelanding biceps femoris EMG as compared with prebreak. No significant differences were observed for frontal plane biomechanics and quadriceps and hamstring landing EMG between prebreak and postbreak. Although it is still unknown whether internal ACL loading changes after a postseason break, the more extended knee movement pattern may present an increased risk factor for ACL injuries
Effects of industrial polystyrene foam insulation pads on the center of pressure and load distribution in the forefeet of clinically normal horses
Objective—To evaluate the ability of industrial polystyrene foam insulation pads to redistribute loads placed on clinically normal weight-bearing structures of the foot and shift the location of the center of pressure palmarly in horses.
Animals—25 nonlame mature horses.
Procedures—Both forefeet from each horse were evaluated. Center of pressure data and solar load distribution patterns were recorded during a 5-second trial by use of a commercial pressure measurement system prior to placement of foam sole support and at 0, 6, 12, 24, and 48 hours after placement. Total contact surface area, contact pressure, peak contact pressure, and center of pressure positions were compared by use of a linear mixed model with repeated measurements.
Results—Total contact surface area was increased significantly at all time points, whereas contact pressure and peak contact pressure were significantly decreased at all time points following application of foam sole supports. Immediately following application of sole support, the position of the center of pressure was significantly moved cranially. However, by 48 hours, the center of pressure was significantly positioned more palmarly than prior to application of the foam supports.
Conclusions and Clinical Relevance—Results indicated that the use of foam sole supports may be an effective, economical, and immediate treatment for acute laminitis
Upper Extremity and Lower Back Moments During Carrying Tasks in Farm Children
Farm youth commonly perform animal care tasks such as feeding and watering. The purÂpose of this study was to determine the effects of age, bucket size, loading symmetry, and amount of load on upper body moments during carrying tasks. Fifty-four male and female parÂticipants in four age groups (8–10 years, 12–14 years, 15–17 years, and adults, 20–26 years) participated in the study. Conditions included combinations of large or small bucket sizes, unilateral or bilateral loading, and load levels of 10% or 20% of body weight (BW). During bucket carrying, elbow flexion, shoulder flexÂion, shoulder abduction, shoulder external rotation, L5/S1 extension, L5/S1 lateral bendÂing, and L5/S1 axial rotation moments were estimated using video data. The 8–10 year-old group did not display higher proportional joint moments as compared with adults. Decreasing the load from 20% BW to 10% BW signifiÂcantly decreased maximum normalized elbow flexion, shoulder flexion, shoulder abduction, shoulder external rotation, L5/S1 lateral bendÂing, and L5/S1 axial rotation moments. CarryÂing the load bilaterally instead of unilaterally also significantly reduced these six maximum normalized joint moments. In addition, modiÂfying the carrying task by using smaller one-gallon buckets produced significant reductions in maximum L5/S1 lateral bending moments
THE INFLUENCE OF EFFECTIVE MASS ON IMPACT FORCE AND ACCELERATION
Accelerometry is often used as a means to quantify the osteogenic or injury potential of impacts. This paper uses a series of four experiments to demonstrate theoretically, mechanically, and experimentally that increasing the effective mass of an impact can lead to an increase in impact force with a corresponding decrease in acceleration. The four experiments included: 1) mass spring models, 2) shoe impact testing, 3) cadaver impact simulation, and 4) an in vivo study manipulating knee angle during running.
Results were consistent with the aim, illustrating a limitation for the use of accelerometers for impact assessment. In order to appropriately interpret the results from accelerometry it is necessary to quantify the effective mass of the impact. Failure to account for the influence of effective mass can lead to erroneous conclusions about impact severity
Effects of Stride Length and Running Mileage on a Probabilistic Stress Fracture Model
The fatigue life of bone is inversely related to strain magnitude. Decreasing stride length is a potential mechanism of strain reduction during running. If stride length is decreased, the number of loading cycles will increase for a given mileage. It is unclear if increased loading cycles are detrimental to skeletal health despite reductions in strain. Purpose: To determine the effects of stride length and running mileage on the probability of tibial stress fracture. Methods: Ten male subjects ran overground at their preferred running velocity during two conditions: preferred stride length and 10% reduction in preferred stride length. Force platform and kinematic data were collected concurrently. A combination of experimental and musculoskeletal modeling techniques was used to determine joint contact forces acting on the distal tibia. Peak instantaneous joint contact forces served as inputs to a finite element model to estimate tibial strains during stance. Stress fracture probability for stride length conditions and three running mileages (3, 5, and 7 miles·d−1) were determined using a probabilistic model of bone damage, repair, and adaptation. Differences in stress fracture probability were compared between conditions using a 2 × 3 repeated-measures ANOVA. Results: The main effects of stride length (P = 0.017) and running mileage (P = 0.001) were significant. Reducing stride length decreased the probability of stress fracture by 3% to 6%. Increasing running mileage increased the probability of stress fracture by 4% to 10%. Conclusions: Results suggest that strain magnitude plays a more important role in stress fracture development than the total number of loading cycles. Runners wishing to decrease their probability for tibial stress fracture may benefit from a 10% reduction in stride length
- …