361 research outputs found
Neutrinos in a spherical box
In the present paper we study some neutrino properties as they may appear in
the low energy neutrinos emitted in triton decay with maximum neutrino energy
of 18.6 keV. The technical challenges to this end can be achieved by building a
very large TPC capable of detecting low energy recoils, down to a a few tenths
of a keV, within the required low background constraints. More specifically We
propose the development of a spherical gaseous TPC of about 10-m in radius and
a 200 Mcurie triton source in the center of curvature. One can list a number of
exciting studies, concerning fundamental physics issues, that could be made
using a large volume TPC and low energy antineutrinos: 1) The oscillation
length involving the small angle of the neutrino mixing matrix, directly
measured in this disappearance experiment, is fully contained inside the
detector. Measuring the counting rate of neutrino-electron elastic scattering
as a function of the distance of the source will give a precise and unambiguous
measurement of the oscillation parameters free of systematic errors. In fact
first estimates show that even with a year's data taking a sensitivity of a few
percent for the measurement of the above angle will be achieved. 2) The low
energy detection threshold offers a unique sensitivity for the neutrino
magnetic moment which is about two orders of magnitude beyond the current
experimental limit. 3) Scattering at such low neutrino energies has never been
studied and any departure from the expected behavior may be an indication of
new physics beyond the standard model. In this work we mainly focus on the
various theoretical issues involved including a precise determination of the
Weinberg angle at very low momentum transfer.Comment: 16 Pages, LaTex, 7 figures, talk given at NANP 2003, Dubna, Russia,
June 23, 200
Ultra low energy results and their impact to dark matter and low energy neutrino physics
We present ultra low energy results taken with the novel Spherical
Proportional Counter. The energy threshold has been pushed down to about 25 eV
and single electrons are clearly collected and detected. To reach such
performance low energy calibration systems have been successfully developed: -
A pulsed UV lamp extracting photoelectrons from the inner surface of the
detector - Various radioactive sources allowing low energy peaks through
fluorescence processes. The bench mark result is the observation of a well
resolved peak at 270 eV due to carbon fluorescence which is unique performance
for such large-massive detector. It opens a new window in dark matter and low
energy neutrino search and may allow detection of neutrinos from a nuclear
reactor or from supernova via neutrino-nucleus elastic scatteringComment: 14 pages,16 figure
Neutron spectroscopy with the Spherical Proportional Counter
A novel large volume spherical proportional counter, recently developed, is
used for neutron measurements. Gas mixtures of with and
pure are studied for thermal and fast neutron detection, providing a
new way for the neutron spectroscopy. The neutrons are detected via the
and reactions. Here we
provide studies of the optimum gas mixture, the gas pressure and the most
appropriate high voltage supply on the sensor of the detector in order to
achieve the maximum amplification and better resolution. The detector is tested
for thermal and fast neutrons detection with a and a
neutron source. The atmospheric neutrons are successfully
measured from thermal up to several MeV, well separated from the cosmic ray
background. A comparison of the spherical proportional counter with the current
available neutron counters is also given.Comment: 7 pages, 10 figure
Performances of Anode-resistive Micromegas for HL-LHC
Micromegas technology is a promising candidate to replace Atlas forward muon
chambers -tracking and trigger- for future HL-LHC upgrade of the experiment.
The increase on background and pile-up event probability requires detector
performances which are currently under studies in intensive RD activities.
We studied performances of four different resistive Micromegas detectors with
different read-out strip pitches. These chambers were tested using \sim120 GeV
momentum pions, at H6 CERN-SPS beam line in autumn 2010. For a strip pitch 500
micrometers we measure a resolution of \sim90 micrometers and a efficiency of
~98%. The track angle effect on the efficiency was also studied. Our results
show that resistive techniques induce no degradation on the efficiency or
resolution, with respect to the standard Micromegas. In some configuration the
resistive coating is able to reduce the discharge currents at least by a factor
of 100.Micromegas technology is a promising candidate to replace Atlas forward
muon chambers -tracking and trigger- for future HL-LHC upgrade of the
experiment. The increase on background and pile-up event probability requires
detector performances which are currently under studies in intensive RD
activities. We studied performances of four different resistive Micromegas
detectors with different read-out strip pitches. These chambers were tested
using \sim120 GeV momentum pions, at H6 CERN-SPS beam line in autumn 2010. For
a strip pitch 500 micrometers we measure a resolution of \sim90 micrometers and
a efficiency of \sim98%. The track angle effect on the efficiency was also
studied. Our results show that resistive techniques induce no degradation on
the efficiency or resolution, with respect to the standard Micromegas. In some
configuration the resistive coating is able to reduce the discharge currents at
least by a factor of 100.Comment: "Presented at the 2011 Hadron Collider Physics symposium (HCP-2011),
Paris, France, November 14-18 2011, 3 pages, 6 figures.
EPUAP classification system for pressure ulcers: European reliability study
‘The definitive version is available at www3.interscience.wiley.com .' Copyright Blackwell PublishingPeer reviewe
A novel large-volume Spherical Detector with Proportional Amplification read-out
A new type of radiation detector based on a spherical geometry is presented.
The detector consists of a large spherical gas volume with a central electrode
forming a radial electric field. Charges deposited in the conversion volume
drift to the central sensor where they are amplified and collected. We
introduce a small spherical sensor located at the center acting as a
proportional amplification structure. It allows high gas gains to be reached
and operates in a wide range of gas pressures. Signal development and the
absolute amplitude of the response are consistent with predictions. Sub-keV
energy threshold with good energy resolution is achieved. This new concept has
been proven to operate in a simple and robust way and allows reading large
volumes with a single read-out channel. The detector performance presently
achieved is already close to fulfill the demands of many challenging projects
from low energy neutrino physics to dark matter detection with applications in
neutron, alpha and gamma spectroscopy.Comment: 13 pages, 13 figure
Tests of the Equivalence Principle with Neutral Kaons
We test the Principle of Equivalence for particles and antiparticles, using
CPLEAR data on tagged K0 and K0bar decays into pi^+ pi^-. For the first time,
we search for possible annual, monthly and diurnal modulations of the
observables |eta_{+-}| and phi_{+-}, that could be correlated with variations
in astrophysical potentials. Within the accuracy of CPLEAR, the measured values
of |eta_{+-}| and phi_{+-} are found not to be correlated with changes of the
gravitational potential. We analyze data assuming effective scalar, vector and
tensor interactions, and we conclude that the Principle of Equivalence between
particles and antiparticles holds to a level of 6.5, 4.3 and 1.8 x 10^{-9},
respectively, for scalar, vector and tensor potentials originating from the Sun
with a range much greater than the distance Earth-Sun. We also study
energy-dependent effects that might arise from vector or tensor interactions.
Finally, we compile upper limits on the gravitational coupling difference
between K0 and K0bar as a function of the scalar, vector and tensor interaction
range.Comment: 15 pages latex 2e, five figures, one style file (cernart.csl)
incorporate
Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR
We use fits to recent published CPLEAR data on neutral kaon decays to
and to constrain the CPT--violation parameters
appearing in a formulation of the neutral kaon system as an open
quantum-mechanical system. The obtained upper limits of the CPT--violation
parameters are approaching the range suggested by certain ideas concerning
quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures
NKG2A inhibits TH2 cell effector function in vitro
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
- …