31 research outputs found

    Isotopic measurements in water vapor, precipitation, and seawater during EUREC4^4A

    Get PDF
    n early 2020, an international team set out to investigate trade-wind cumulus clouds and their coupling to the large-scale circulation through the field campaign EUREC4^4A: ElUcidating the RolE of Clouds-Circulation Coupling in ClimAte. Focused on the western tropical Atlantic near Barbados, EUREC4^4A deployed a number of innovative observational strategies, including a large network of water isotopic measurements collectively known as EUREC4^4A-iso, to study the tropical shallow convective environment. The goal of the isotopic measurements was to elucidate processes that regulate the hydroclimate state – for example, by identifying moisture sources, quantifying mixing between atmospheric layers, characterizing the microphysics that influence the formation and persistence of clouds and precipitation, and providing an extra constraint in the evaluation of numerical simulations. During the field experiment, researchers deployed seven water vapor isotopic analyzers on two aircraft, on three ships, and at the Barbados Cloud Observatory (BCO). Precipitation was collected for isotopic analysis at the BCO and from aboard four ships. In addition, three ships collected seawater for isotopic analysis. All told, the in situ data span the period 5 January–22 February 2020 and cover the approximate area 6 to 16° N and 50 to 60° W, with water vapor isotope ratios measured from a few meters above sea level to the mid-free troposphere and seawater samples spanning the ocean surface to several kilometers depth. This paper describes the full EUREC4^4A isotopic in situ data collection – providing extensive information about sampling strategies and data uncertainties – and also guides readers to complementary remotely sensed water vapor isotope ratios. All field data have been made publicly available even if they are affected by known biases, as is the case for high-altitude aircraft measurements, one of the two BCO ground-based water vapor time series, and select rain and seawater samples from the ships. Publication of these data reflects a desire to promote dialogue around improving water isotope measurement strategies for the future. The remaining, high-quality data create unprecedented opportunities to close water isotopic budgets and evaluate water fluxes and their influence on cloudiness in the trade-wind environment. The full list of dataset DOIs and notes on data quality flags are provided in Table 3 of Sect. 5 (“Data availability”)

    Particulate emissions from commercial shipping: chemical, physical, and optical properties

    Get PDF
    , 39% OM, and 15% BC and differs from inventories that used 81%, 14%, and 5% and 31%, 63%, and 6% SO 4 2Ă€ , OM, and BC, respectively. SO 4 2Ă€ and OM mass were found to be dependent on fuel sulfur content as were SSA, hygroscopicity, and CCN concentrations. BC mass was dependent on engine type and combustion efficiency. A plume evolution study conducted on one vessel showed conservation of particle light absorption, decrease in CN > 5 nm, increase in particle hygroscopicity, and an increase in average particle size with distance from emission. These results suggest emission of small nucleation mode particles that subsequently coagulate/condense onto larger BC and OM. This work contributes to an improved understanding of the impacts of ship emissions on climate and air quality and will also assist in determining potential effects of altering fuel standards

    Mucin and Agitation Shape Predation of <i>Escherichia coli</i> by Lytic Coliphage

    No full text
    The ability of bacteriophage (phage), abundant within the gastrointestinal microbiome, to regulate bacterial populations within the same micro-environment offers prophylactic and therapeutic opportunities. Bacteria and phage have both been shown to interact intimately with mucin, and these interactions invariably effect the outcomes of phage predation within the intestine. To better understand the influence of the gastrointestinal micro-environment on phage predation, we employed enclosed, in vitro systems to investigate the roles of mucin concentration and agitation as a function of phage type and number on bacterial killing. Using two lytic coliphage, T4 and PhiX174, bacterial viability was quantified following exposure to phages at different multiplicities of infection (MOI) within increasing, physiological levels of mucin (0–4%) with and without agitation. Comparison of bacterial viability outcomes demonstrated that at low MOI, agitation in combination with higher mucin concentration (>2%) inhibited phage predation by both phages. However, when MOI was increased, PhiX predation was recovered regardless of mucin concentration or agitation. In contrast, only constant agitation of samples containing a high MOI of T4 demonstrated phage predation; briefly agitated samples remained hindered. Our results demonstrate that each phage–bacteria pairing is uniquely influenced by environmental factors, and these should be considered when determining the potential efficacy of phage predation under homeostatic or therapeutic circumstances
    corecore