19 research outputs found

    Renalase Protects against Renal Fibrosis by Inhibiting the Activation of the ERK Signaling Pathways

    No full text
    Renal interstitial fibrosis is a common pathway for the progression of chronic kidney disease (CKD) to end-stage renal disease. Renalase, acting as a signaling molecule, has been reported to have cardiovascular and renal protective effects. However, its role in renal fibrosis remains unknown. In this study, we evaluated the therapeutic efficacy of renalase in rats with complete unilateral ureteral obstruction (UUO) and examined the inhibitory effects of renalase on transforming growth factor-β1 (TGF-β1)-induced epithelial–mesenchymal transition (EMT) in human proximal renal tubular epithelial (HK-2) cells. We found that in the UUO model, the expression of renalase was markedly downregulated and adenoviral-mediated expression of renalase significantly attenuated renal interstitial fibrosis, as evidenced by the maintenance of E-cadherin expression and suppressed expression of α-smooth muscle actin (α-SMA), fibronectin and collagen-I. In vitro, renalase inhibited TGF-β1-mediated upregulation of α-SMA and downregulation of E-cadherin. Increased levels of Phospho-extracellular regulated protein kinases (p-ERK1/2) in TGF-β1-stimulated cells were reversed by renalase cotreatment. When ERK1 was overexpressed, the inhibition of TGF-β1-induced EMT and fibrosis mediated by renalase was attenuated. Our study provides the first evidence that renalase can ameliorate renal interstitial fibrosis by suppression of tubular EMT through inhibition of the ERK pathway. These results suggest that renalase has potential renoprotective effects in renal interstitial fibrosis and may be an effective agent for slowing CKD progression

    Dual-Emissive Waterborne Polyurethanes Prepared from Naphthalimide Derivative

    No full text
    Fluorescent and room-temperature phosphorescent (RTP) materials are widely used in bioimaging, chemical sensing, optoelectronics and encryption. Here, a series of single-component dual-emissive waterborne polyurethanes (WPUs) with both fluorescence and room-temperature phosphorescence were synthesized. Dye without halogen atom incorporated into WPUs can only exhibit fluorescence due to poor spin-orbit coupling. When bromine atom is introduced into dye, we found that WPUs can emit both fluorescence and room-temperature phosphorescence with lifetimes up to milliseconds because of enhanced spin-orbit coupling. Moreover, with an increase in dye concentrations in WPUs, excimers are formed due to the aggregation effect, and may promote communication between singlet and triplet states. At different dye concentrations, structural, thermal, and luminescent properties serve as the main focus

    Galactomannan in Bronchoalveolar Lavage Fluid for Diagnosis of Invasive Pulmonary Aspergillosis with Nonneutropenic Patients

    No full text
    Background. We evaluated the utility of galactomannan (GM) in bronchoalveolar lavage fluid (BALF) for the diagnosis of invasive pulmonary aspergillosis (IPA) in nonneutropenic patients. Methods. A total of 183 patients were included in the final analysis. Bronchoscopies and the detection of GM in BALF were all performed on them. Results. Ten cases of IPA were diagnosed. ROC data demonstrated that, for diagnosing IPA, an optimal cutoff value for GM in BALF of 0.76 yielded a sensitivity of 100.0% and a specificity of 76.2%. Symptoms and radiological findings had no significant difference between proven or probable IPA group and non-IPA group. In our case-control analysis, although nine patients with false-positive results received treatment with Piperacillin/tazobactam, there was no significant difference between case and control group. Conclusions. BALF GM detection is a valuable adjunctive diagnostic tool. Our retrospective study suggests that the optimal value of GM detection in BALF is 0.76 in nonneutropenic patients
    corecore