34 research outputs found

    GUARANTEE DESIGN ON ENERGY PERFORMANCE CONTRACTS UNDER UNCERTAINTY

    Get PDF
    Due to the growing concerns with climate change and energy supply, Energy Performance Contracting (EPC), which uses the guaranteed future utility savings to repay the initial renovation investments, becomes increasingly popular. However, most Energy Service Companies (ESCOs) set the savings guarantee roughly based on their previous experience, which leads to inaccurate estimates in practice. This paper has built the stochastic models for the savings risks both from the energy price volatility and the facility performance instability, which follow the Geometric Brownian Motions (GBM) and Ito's lemma. Then, a flexible guarantee designing method for ESCOs is developed to minimize the financial risks and a case study has been conducted to show the application. Finally, suggestions have been made for how ESCOs set the guarantee and the extra profit sharing proportion in contracts based on the existing information. This method will help them appropriately allocate risks with successful contract negotiation

    Belief Evolution Network-based Probability Transformation and Fusion

    Full text link
    Smets proposes the Pignistic Probability Transformation (PPT) as the decision layer in the Transferable Belief Model (TBM), which argues when there is no more information, we have to make a decision using a Probability Mass Function (PMF). In this paper, the Belief Evolution Network (BEN) and the full causality function are proposed by introducing causality in Hierarchical Hypothesis Space (HHS). Based on BEN, we interpret the PPT from an information fusion view and propose a new Probability Transformation (PT) method called Full Causality Probability Transformation (FCPT), which has better performance under Bi-Criteria evaluation. Besides, we heuristically propose a new probability fusion method based on FCPT. Compared with Dempster Rule of Combination (DRC), the proposed method has more reasonable result when fusing same evidence

    Evaluating Risks of Dam-Reservoir Systems Using Efficient Importance Sampling

    Get PDF
    The occurrence frequency of failure events serve as critical indexes representing the safety status of dam-reservoir systems. Although overtopping is the most common failure mode with significant consequences, this type of event, in most cases, has a small probability. Estimation of such rare event risks for dam-reservoir systems with crude Monte Carlo (CMC) simulation techniques requires a prohibitively large number of trials, where significant computational resources are required to reach the satisfied estimation results. Otherwise, estimation of the disturbances would not be accurate enough. In order to reduce the computation expenses and improve the risk estimation efficiency, an importance sampling (IS) based simulation approach is proposed in this dissertation to address the overtopping risks of dam-reservoir systems. Deliverables of this study mainly include the following five aspects: 1) the reservoir inflow hydrograph model; 2) the dam-reservoir system operation model; 3) the CMC simulation framework; 4) the IS-based Monte Carlo (ISMC) simulation framework; and 5) the overtopping risk estimation comparison of both CMC and ISMC simulation. In a broader sense, this study meets the following three expectations: 1) to address the natural stochastic characteristics of the dam-reservoir system, such as the reservoir inflow rate; 2) to build up the fundamental CMC and ISMC simulation frameworks of the dam-reservoir system in order to estimate the overtopping risks; and 3) to compare the simulation results and the computational performance in order to demonstrate the ISMC simulation advantages. The estimation results of overtopping probability could be used to guide the future dam safety investigations and studies, and to supplement the conventional analyses in decision making on the dam-reservoir system improvements. At the same time, the proposed methodology of ISMC simulation is reasonably robust and proved to improve the overtopping risk estimation. The more accurate estimation, the smaller variance, and the reduced CPU time, expand the application of Monte Carlo (MC) technique on evaluating rare event risks for infrastructures

    Quantum belief function

    Full text link
    The belief function in Dempster Shafer evidence theory can express more information than the traditional Bayesian distribution. It is widely used in approximate reasoning, decision-making and information fusion. However, its power exponential explosion characteristics leads to the extremely high computational complexity when handling large amounts of elements in classic computers. In order to solve the problem, we encode the basic belief assignment (BBA) into quantum states, which makes each qubit correspond to control an element. Besides the high efficiency, this quantum expression is very conducive to measure the similarity between two BBAs, and the measuring quantum algorithm we come up with has exponential acceleration theoretically compared to the corresponding classical algorithm. In addition, we simulate our quantum version of BBA on Qiskit platform, which ensures the rationality of our algorithm experimentally. We believe our results will shed some light on utilizing the characteristic of quantum computation to handle belief function more conveniently

    Cross-utterance ASR Rescoring with Graph-based Label Propagation

    Full text link
    We propose a novel approach for ASR N-best hypothesis rescoring with graph-based label propagation by leveraging cross-utterance acoustic similarity. In contrast to conventional neural language model (LM) based ASR rescoring/reranking models, our approach focuses on acoustic information and conducts the rescoring collaboratively among utterances, instead of individually. Experiments on the VCTK dataset demonstrate that our approach consistently improves ASR performance, as well as fairness across speaker groups with different accents. Our approach provides a low-cost solution for mitigating the majoritarian bias of ASR systems, without the need to train new domain- or accent-specific models.Comment: To appear in IEEE ICASSP 202

    The attenuation of plasmaspheric hiss associated with the enhanced magnetospheric electric field

    Get PDF
    We report an attenuation of hiss wave intensity in the duskside of the outer plasmasphere in response to enhanced convection and a substorm based on Van Allen Probe observations. Using test particle codes, we simulate the dynamics of energetic electron fluxes based on a realistic magnetospheric electric field model driven by solar wind and subauroral polarization stream. We suggest that the enhanced magnetospheric electric field causes the outward and sunward motion of energetic electrons, corresponding to the decrease of energetic electron fluxes on the duskside, leading to the subsequent attenuation of hiss wave intensity. The results indicate that the enhanced electric field can significantly change the energetic electron distributions, which provide free energy for hiss wave amplification. This new finding is critical for understanding the generation of plasmaspheric hiss and its response to solar wind and substorm activity.Published versio
    corecore