39 research outputs found
Spontaneous Coronary Artery Dissection as Presenting Feature of Vascular Ehlers-Danlos Syndrome
A spontaneous coronary artery dissection as the sole presenting feature of vascular Ehlers-Danlos syndrome is an uncommon finding. We present a 33-year-old woman with sudden onset chest pain caused by a spontaneous coronary artery dissection. Genetic testing revealed vascular Ehlers-Danlos syndrome as the underlying cause. Specifically, we show the value of genetic testing, which in some patients may be the only way of establishing a diagnosis
Untargeted metabolomics-based screening method for inborn errors of metabolism using semi-automatic sample preparation with an UHPLC-orbitrap-MS platform
Routine diagnostic screening of inborn errors of metabolism (IEM) is currently performed by different targeted analyses of known biomarkers. This approach is time-consuming, targets a limited number of biomarkers and will not identify new biomarkers. Untargeted metabolomics generates a global metabolic phenotype and has the potential to overcome these issues. We describe a novel, single platform, untargeted metabolomics method for screening IEM, combining semi-automatic sample preparation with pentafluorophenylpropyl phase (PFPP)-based UHPLC-Orbitrap-MS. We evaluated analytical performance and diagnostic capability of the method by analysing plasma samples of 260 controls and 53 patients with 33 distinct IEM. Analytical reproducibility was excellent, with peak area variation coefficients below 20% for the majority of the metabolites. We illustrate that PFPP-based chromatography enhances identification of isomeric compounds. Ranked z-score plots of metabolites annotated in IEM samples were reviewed by two laboratory specialists experienced in biochemical genetics, resulting in the correct diagnosis in 90% of cases. Thus, our untargeted metabolomics platform is robust and differentiates metabolite patterns of different IEMs from those of controls. We envision that the current approach to diagnose IEM, using numerous tests, will eventually be replaced by untargeted metabolomics methods, which also have the potential to discover novel biomarkers and assist in interpretation of genetic data
Using out-of-batch reference populations to improve untargeted metabolomics for screening inborn errors of metabolism
Untargeted metabolomics is an emerging technology in the laboratory diagnosis of inborn errors of metabolism (IEM). Analysis of a large number of reference samples is crucial for correcting variations in metabolite concentrations that result from factors, such as diet, age, and gender in order to judge whether metabolite levels are abnormal. However, a large number of reference samples requires the use of out-of-batch samples, which is hampered by the semi-quantitati
Comprehensive study of 28 individuals with SIN3A-related disorder underscoring the associated mild cognitive and distinctive facial phenotype
Witteveen-Kolk syndrome (OMIM 613406) is a recently defined neurodevelopmental syndrome caused by heterozygous loss-of-function variants in SIN3A. We define the clinical and neurodevelopmental phenotypes related to SIN3A-haploinsufficiency in 28 unreported patients. Patients with SIN3A variants adversely affecting protein function have mild intellectual disability, growth and feeding difficulties. Involvement of a multidisciplinary team including a geneticist, pediatrician and neurologist should be considered in managing these patients.
Patients described here were identified through a combination of clinical evaluation and gene matching strategies (GeneMatcher and Decipher). All patients consented to participate in this study.
Mean age of this cohort was 8.2 years (17 males, 11 females). Out of 16 patients ≥ eight years old assessed, eight (50%) had mild intellectual disability (ID), four had moderate ID (22%), and one had severe ID (6%). Four (25%) did not have any cognitive impairment. Other neurological symptoms such as seizures (4/28) and hypotonia (12/28) were common. Behaviour problems were reported in a minority. In patients ≥2 years, three were diagnosed with Autism Spectrum Disorder (ASD) and four with Attention Deficit Hyperactivity Disorder (ADHD). We report 27 novel variants and one previously reported variant. 24 were truncating variants; three were missense variants and one large in-frame gain including exons 10-12.
Recommended from our members
Germline ERG haploinsufficiency defines a new syndrome with cytopenia and hematological malignancy predisposition
The genomics era has facilitated discovery of new genes predisposing to bone marrow failure (BMF) and hematological malignancy (HM). We report the discovery of ERG as a novel autosomal dominant BMF/HM predisposition gene. ERG is a highly constrained transcription factor critical for definitive hematopoiesis, stem cell function and platelet maintenance. ERG colocalizes with other transcription factors including RUNX1 and GATA2 on promoters/enhancers of genes orchestrating hematopoiesis. We identified a rare heterozygous ERG missense variant in 3 thrombocytopenic individuals from one family and 14 additional ERG variants in unrelated individuals with BMF/HM including 2 de novo cases and 3 truncating variants. Phenotypes associated with pathogenic germline ERG variants included cytopenias (thrombocytopenia, neutropenia, pancytopenia) and HMs (acute myeloid leukemia, myelodysplastic syndrome, acute lymphoblastic leukemia) with onset before 40 years. Twenty ERG variants (19 missense, 1 truncating) including 3 missense population variants were functionally characterized. Thirteen potentially pathogenic ETS domain missense variants displayed loss-of-function characteristics disrupting transcriptional transactivation, DNA-binding and/or nuclear localization. Selected variants overexpressed in mouse fetal liver cells failed to drive myeloid differentiation and cytokine-independent growth in culture, and to promote acute erythroleukemia when transplanted into mice, concordant with these variants being loss-of-function. Four individuals displayed somatic genetic rescue by copy neutral loss of heterozygosity. Identification of predisposing germline ERG variants has clinical implications for patient/family diagnosis, counselling, surveillance, and treatment strategies including selection of bone marrow donors or cell/gene therapy
Comprehensive study of 28 individuals with SIN3A-related disorder underscoring the associated mild cognitive and distinctive facial phenotype
Witteveen-Kolk syndrome (OMIM 613406) is a recently defined neurodevelopmental syndrome caused by heterozygous loss-of-function variants in SIN3A. We define the clinical and neurodevelopmental phenotypes related to SIN3A-haploinsufficiency in 28 unreported patients. Patients with SIN3A variants adversely affecting protein function have mild intellectual disability, growth and feeding difficulties. Involvement of a multidisciplinary team including a geneticist, paediatrician and neurologist should be considered in managing these patients. Patients described here were identified through a combination of clinical evaluation and gene matching strategies (GeneMatcher and Decipher). All patients consented to participate in this study. Mean age of this cohort was 8.2 years (17 males, 11 females). Out of 16 patients ≥ 8 years old assessed, eight (50%) had mild intellectual disability (ID), four had moderate ID (22%), and one had severe ID (6%). Four (25%) did not have any cognitive impairment. Other neurological symptoms such as seizures (4/28) and hypotonia (12/28) were common. Behaviour problems were reported in a minority. In patients ≥2 years, three were diagnosed with Autism Spectrum Disorder (ASD) and four with Attention Deficit Hyperactivity Disorder (ADHD). We report 27 novel variants and one previously reported variant. 24 were truncating variants; three were missense variants and one large in-frame gain including exons 10–12
Phenylketonuria: optimizing care
Phenylketonuria (PKU; MIM 261600) is an autosomal recessive disorder of phenylalanine metabolism caused by a deficiency of the enzyme phenylalanine hydroxylase (EC 1.14.16.1). PKU leads to severe cognitive impairment due to accumulation of phenylalanine in the brain. Treatment consists of dietary phenylalanine intake restriction (an essential amino acid) through a diet low in natural protein, in order to achieve safe Phe blood levels. The treatment of PKU has been very successful since the introduction of newborn screening in the 1960’s, which has enabled caregivers to identify patients and start dietary natural protein restriction within the first weeks of life. Early and continuous treatment has led to prevention of severe cognitive impairment and near normalization of outcomes. Despite these great achievements the treatment of PKU has also led to some new challenges in patient care. Some of these newly encountered issues may be due to the dietary restrictions, while others may be caused by the disease itself. Optimizing care in patients with PKU needs both fine-tuning of the treatment itself, and evaluation and management of adverse outcomes of the treatment. This thesis presents several studies focussing on the following topics related to optimizing care in PKU: clinical pathways as a tool for multidisciplinary consensus in the care for metabolic disorders; the time burden, out-of-pocket-costs and health related quality of life of patients with PKU; nutrient status and bone health in PKU