1,901 research outputs found

    Shining Light On Dark Matter with the CMS Experiment

    Full text link
    We present a search for large extra dimensions and dark matter pair-production using events with a photon and missing transverse energy in pp collisions at s=8\sqrt{s} =8 TeV. This search is done with the data taken by the CMS experiment at the LHC corresponding to an integrated luminosity of 19.6 fb−1^{-1}. We find no deviations with respect to the standard model expectation and improve the current limits on several models.Comment: LHCP Conference Proceedin

    Performance of e/Îł\gamma-based Triggers at the CMS High Level Trigger

    Full text link
    The CMS experiment has been designed with a two-level trigger system: the Level 1 (L1) Trigger, implemented on custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the CMS reconstruction and analysis software running on a computer farm. In order to achieve a good rate reduction with as little as possible impact on the physics efficiency, the algorithms used at HLT are designed to follow as closely as possible the ones used in the offline reconstruction. Here, we will present the algorithms used for the online reconstruction of electrons and photons (e/Îł\gamma), both at L1 and HLT, and their performance and the planned improvements of these HLT objects.Comment: LHCP Conference Proceeding

    Observation of the production of three massive gauge bosons at √s=13 TeV

    Get PDF
    The first observation is reported of the combined production of three massive gauge bosons (VVV with V=W, Z) in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis is based on a data sample recorded by the CMS experiment at the CERN LHC corresponding to an integrated luminosity of 137  fb^−1. The searches for individual WWW, WWZ, WZZ, and ZZZ production are performed in final states with three, four, five, and six leptons (electrons or muons), or with two same-sign leptons plus one or two jets. The observed (expected) significance of the combined VVV production signal is 5.7 (5.9) standard deviations and the corresponding measured cross section relative to the standard model prediction is 1.02^+0.26_−0.23. The significances of the individual WWW and WWZ production are 3.3 and 3.4 standard deviations, respectively. Measured production cross sections for the individual triboson processes are also reported.Published versio

    Online data handling and storage at the CMS experiment

    Get PDF
    During the LHC Long Shutdown 1, the CMS Data Acquisition (DAQ) system underwent a partial redesign to replace obsolete network equipment, use more homogeneous switching technologies, and support new detector back-end electronics. The software and hardware infrastructure to provide input, execute the High Level Trigger (HLT) algorithms and deal with output data transport and storage has also been redesigned to be completely file- based. All the metadata needed for bookkeeping are stored in files as well, in the form of small documents using the JSON encoding. The Storage and Transfer System (STS) is responsible for aggregating these files produced by the HLT, storing them temporarily and transferring them to the T0 facility at CERN for subsequent offline processing. The STS merger service aggregates the output files from the HLT from ~62 sources produced with an aggregate rate of ~2GB/s. An estimated bandwidth of 7GB/s in concurrent read/write mode is needed. Furthermore, the STS has to be able to store several days of continuous running, so an estimated of 250TB of total usable disk space is required. In this article we present the various technological and implementation choices of the three components of the STS: the distributed file system, the merger service and the transfer system.United States. Department of EnergyNational Science Foundation (U.S.

    Search for Pair-Produced Resonances Decaying to Quark Pairs in Proton-Proton Collisions at √s = 13  TeV

    Get PDF
    A general search for the pair production of resonances, each decaying to two quarks, is reported. The search is conducted separately for heavier resonances (masses above 400 GeV), where each of the four final-state quarks generates a hadronic jet resulting in a four-jet signature, and for lighter resonances (masses between 80 and 400 GeV), where the pair of quarks from each resonance is collimated and reconstructed as a single jet resulting in a two-jet signature. In addition, a b-tagged selection is applied to target resonances with a bottom quark in the final state. The analysis uses data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 35.9  fb⁻Âč, from proton-proton collisions at a center-of-mass energy of 13 TeV. The mass spectra are analyzed for the presence of new resonances, and are found to be consistent with standard model expectations. The results are interpreted in the framework of R-parity-violating supersymmetry assuming the pair production of scalar top quarks decaying via the hadronic coupling λâ€Čâ€Č312 or λâ€Čâ€Č323 and upper limits on the cross section as a function of the top squark mass are set. These results probe a wider range of masses than previously explored at the LHC, and extend the top squark mass limits in the ˜t→qqâ€Č scenario

    Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at √s = 13 TeV

    Get PDF
    Results are presented from a search for the direct electroweak production of charginos and neutralinos in signatures with either two or more leptons (electrons or muons) of the same electric charge, or with three or more leptons, which can include up to two hadronically decaying tau leptons. The results are based on a sample of proton-proton collision data collected at s√=13 TeV, recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb⁻Âč. The observed event yields are consistent with the expectations based on the standard model. The results are interpreted in simplified models of supersymmetry describing various scenarios for the production and decay of charginos and neutralinos. Depending on the model parameters chosen, mass values between 180 GeV and 1150 GeV are excluded at 95% CL. These results significantly extend the parameter space probed for these particles in searches at the LHC. In addition, results are presented in a form suitable for alternative theoretical interpretations

    Search for Standard Model Production of Four Top Quarks with Same-Sign and Multilepton Final States in Proton–proton Collisions at √s = 13 TeV

    Get PDF
    A search for standard model production of four top quarks (ttÂŻttÂŻ) is reported using events containing at least three leptons (e,ÎŒ) or a same-sign lepton pair. The events are produced in proton–proton collisions at a center-of-mass energy of 13TeV at the LHC, and the data sample, recorded in 2016, corresponds to an integrated luminosity of 35.9fb[superscript −1]. Jet multiplicity and flavor are used to enhance signal sensitivity, and dedicated control regions are used to constrain the dominant backgrounds. The observed and expected signal significances are, respectively, 1.6 and 1.0 standard deviations, and the ttÂŻttÂŻ cross section is measured to be 16.9[superscript +13.8][subscript −11.4] fb, in agreement with next-to-leading-order standard model predictions. These results are also used to constrain the Yukawa coupling between the top quark and the Higgs boson to be less than 2.1 times its expected standard model value at 95% confidence level

    Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at √s=8 TeV using H → WW decays

    Get PDF
    The cross section for Higgs boson production in pp collisions is studied using the H → W[superscript +]W[superscript −] decay mode, followed by leptonic decays of the W bosons to an oppositely charged electron-muon pair in the final state. The measurements are performed using data collected by the CMS experiment at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.4 fb[superscript −1]. The Higgs boson transverse momentum (p[subscript T]) is reconstructed using the lepton pair p[subscript T] and missing p[subscript T]. The differential cross section times branching fraction is measured as a function of the Higgs boson pTin a fiducial phase space defined to match the experimental acceptance in terms of the lepton kinematics and event topology. The production cross section times branching fraction in the fiducial phase space is measured to be 39 ± 8 (stat) ± 9 (syst) fb. The measurements are found to agree, within experimental uncertainties, with theoretical calculations based on the standard model. Keywords: Hadron-Hadron scattering (experiments), Higgs physicsNational Science Foundation (U.S.)United States. Department of Energ
    • 

    corecore