270 research outputs found

    Antibodies against Lysophosphatidic Acid Protect against Blast-Induced Ocular Injuries

    Get PDF
    Exposure to blast overpressure waves is implicated as the major cause of ocular injuries and resultant visual dysfunction in veterans involved in recent combat operations. No effective therapeutic strategies have been developed so far for blast-induced ocular dysfunction. Lysophosphatidic acid (LPA) is a bioactive phospholipid generated by activated platelets, astrocytes, choroidal plexus cells, and microglia and is reported to play major roles in stimulating inflammatory processes. The levels of LPA in the cerebrospinal fluid have been reported to increase acutely in patients with traumatic brain injury (TBI) as well as in a controlled cortical impact (CCI) TBI model in mice. In the present study, we have evaluated the efficacy of a single intravenous administration of a monoclonal LPA antibody (25 mg/kg) given at 1 h post-blast for protection against injuries to the retina and associated ocular dysfunctions. Our results show that a single 19 psi blast exposure significantly increased the levels of several species of LPA in blood plasma at 1 and 4 h post-blast. The anti-LPA antibody treatment significantly decreased glial cell activation and preserved neuronal cell morphology in the retina on day 8 after blast exposure. Optokinetic measurements indicated that anti-LPA antibody treatment significantly improved visual acuity in both eyes on days 2 and 6 post-blast exposure. Anti-LPA antibody treatment significantly increased rod photoreceptor and bipolar neuronal cell signaling in both eyes on day 7 post-blast exposure. These results suggest that blast exposure triggers release of LPAs, which play a major role promoting blast-induced ocular injuries, and that a single early administration of anti-LPA antibodies provides significant protection

    Lambda Station: On-Demand Flow Based Routing for Data Intensive Grid Applications Over Multitopology Networks

    Get PDF
    Lambda Station is an ongoing project of Fermi National Accelerator Laboratory and the California Institute of Technology. The goal of this project is to design, develop and deploy network services for path selection, admission control and flow based forwarding of traffic among data-intensive Grid applications such as are used in High Energy Physics and other communities. Lambda Station deals with the last-mile problem in local area networks, connecting production clusters through a rich array of wide area networks. Selective forwarding of traffic is controlled dynamically at the demand of applications. This paper introduces the motivation of this project, design principles and current status. Integration of Lambda Station client API with the essential Grid middleware such as the dCache/SRM Storage Resource Manager is also described. Finally, the results of applying Lambda Station services to development and production clusters at Fermilab and Caltech over advanced networks such as DOE's UltraScience Net and NSF's UltraLight is covered

    Lambda Station: On-Demand Flow Based Routing for Data Intensive Grid Applications Over Multitopology Networks

    Get PDF
    Lambda Station is an ongoing project of Fermi National Accelerator Laboratory and the California Institute of Technology. The goal of this project is to design, develop and deploy network services for path selection, admission control and flow based forwarding of traffic among data-intensive Grid applications such as are used in High Energy Physics and other communities. Lambda Station deals with the last-mile problem in local area networks, connecting production clusters through a rich array of wide area networks. Selective forwarding of traffic is controlled dynamically at the demand of applications. This paper introduces the motivation of this project, design principles and current status. Integration of Lambda Station client API with the essential Grid middleware such as the dCache/SRM Storage Resource Manager is also described. Finally, the results of applying Lambda Station services to development and production clusters at Fermilab and Caltech over advanced networks such as DOE's UltraScience Net and NSF's UltraLight is covered

    Common ADRB2 Haplotypes Derived from 26 Polymorphic Sites Direct β2-Adrenergic Receptor Expression and Regulation Phenotypes

    Get PDF
    The beta2-adrenergic receptor (beta2AR) is expressed on numerous cell-types including airway smooth muscle cells and cardiomyocytes. Drugs (agonists or antagonists) acting at these receptors for treatment of asthma, chronic obstructive pulmonary disease, and heart failure show substantial interindividual variability in response. The ADRB2 gene is polymorphic in noncoding and coding regions, but virtually all ADRB2 association studies have utilized the two common nonsynonymous coding SNPs, often reaching discrepant conclusions.We constructed the 8 common ADRB2 haplotypes derived from 26 polymorphisms in the promoter, 5'UTR, coding, and 3'UTR of the intronless ADRB2 gene. These were cloned into an expression construct lacking a vector-based promoter, so that beta2AR expression was driven by its promoter, and steady state expression could be modified by polymorphisms throughout ADRB2 within a haplotype. "Whole-gene" transfections were performed with COS-7 cells and revealed 4 haplotypes with increased cell surface beta2AR protein expression compared to the others. Agonist-promoted downregulation of beta2AR protein expression was also haplotype-dependent, and was found to be increased for 2 haplotypes. A phylogenetic tree of the haplotypes was derived and annotated by cellular phenotypes, revealing a pattern potentially driven by expression.Thus for obstructive lung disease, the initial bronchodilator response from intermittent administration of beta-agonist may be influenced by certain beta2AR haplotypes (expression phenotypes), while other haplotypes may influence tachyphylaxis during the response to chronic therapy (downregulation phenotypes). An ideal clinical outcome of high expression and less downregulation was found for two haplotypes. Haplotypes may also affect heart failure antagonist therapy, where beta2AR increase inotropy and are anti-apoptotic. The haplotype-specific expression and regulation phenotypes found in this transfection-based system suggest that the density of genetic information in the form of these haplotypes, or haplotype-clusters with similar phenotypes can potentially provide greater discrimination of phenotype in human disease and pharmacogenomic association studies
    • …
    corecore