2 research outputs found

    Nonclinical safety evaluation of scAAV8-RLBP1 (CPK850) for treatment of RLBP1 retinitis pigmentosa

    No full text
    Retinitis pigmentosa is a form of retinal degeneration usually caused by genetic mutations affecting key functional proteins. We have previously demonstrated efficacy in a mouse model of RLBP1 deficiency with a self-complementary AAV8 vector carrying the gene for human RLBP1 under control of a short RLBP1 promoter (CPK850)1. In this communication, we describe the nonclinical safety profile of this construct as well as updated efficacy data in the intended clinical formulation. In Rlbp1-/- mice dosed at a range of CPK850 levels, a minimum efficacious dose of 3x107 vg in a volume of 1ul was observed. For safety assessment in these and Rlbp1+/+ mice, optical coherence tomography (OCT) and histopathological analysis indicated retinal thinning that appeared to be dose-dependent for both Rlbp1 genotypes with no qualitative difference noted between Rlbp1+/+ and Rlbp1-/- mice. In a non-human primate study, RLBP1 mRNA expression was detected and dose dependent intraocular inflammation and retinal thinning were observed. Inflammation resolved slowly over time, and did not appear to be exacerbated in the presence of anti-AAV8 antibodies. Biodistribution was evaluated in rats as well as from satellite animals in the non-human primate study. The vector was largely detected in ocular tissues as well as at low levels in the optic nerve, superior colliculus and lateral geniculate nucleus with limited distribution outside of these tissues. These data suggest that an initial subretinal dose of ~3x107 vg/uL CPK850 could safely be used in clinical trials

    Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary

    No full text
    The Working Group I (WGI) contribution to the Intergovernmental Panel on Climate Change Sixth Assessment Report (AR6) assess the physical science basis of climate change. As part of that contribution, this Technical Summary (TS) is designed to bridge between the comprehensive assessment of the WGI Chapters and its Summary for Policymakers (SPM). It is primarily built from the Executive Summaries of the individual chapters and atlas and provides a synthesis of key findings based on multiple lines of evidence (e.g., analyses of observations, models, paleoclimate information and understanding of physical, chemical and biological processes and components of the climate system). All the findings and figures here are supported by and traceable to the underlying chapters, with relevant chapter sections indicated in curly brackets
    corecore