36 research outputs found

    A novel approach to the classification of terrestrial drainage networks based on deep learning and preliminary results on solar system bodies

    Get PDF
    Several approaches were proposed to describe the geomorphology of drainage networks and the abiotic/biotic factors determining their morphology. There is an intrinsic complexity of the explicit qualification of the morphological variations in response to various types of control factors and the difficulty of expressing the cause-effect links. Traditional methods of drainage network classification are based on the manual extraction of key characteristics, then applied as pattern recognition schemes. These approaches, however, have low predictive and uniform ability. We present a different approach, based on the data-driven supervised learning by images, extended also to extraterrestrial cases. With deep learning models, the extraction and classification phase is integrated within a more objective, analytical, and automatic framework. Despite the initial difficulties, due to the small number of training images available, and the similarity between the different shapes of the drainage samples, we obtained successful results, concluding that deep learning is a valid way for data exploration in geomorphology and related fields

    Periodic Astrometric Signal Recovery Through Convolutional Autoencoders

    Get PDF
    Astrometric detection involves precise measurements of stellar positions, and it is widely regarded as the leading concept presently ready to find Earth-mass planets in temperate orbits around nearby sun-like stars. The TOLIMAN space telescope [39] is a low-cost, agile mission concept dedicated to narrow-angle astrometric monitoring of bright binary stars. In particular the mission will be optimised to search for habitable-zone planets around {\}{\$}{\backslash}alpha {\$}{\$}\alpha$ Centauri AB. If the separation between these two stars can be monitored with sufficient precision, tiny perturbations due to the gravitational tug from an unseen planet can be witnessed and, given the configuration of the optical system, the scale of the shifts in the image plane are about one-millionth of a pixel. Image registration at this level of precision has never been demonstrated (to our knowledge) in any setting within science. In this paper, we demonstrate that a Deep Convolutional Auto-Encoder is able to retrieve such a signal from simplified simulations of the TOLIMAN data and we present the full experimental pipeline to recreate out experiments from the simulations to the signal analysis. In future works, all the more realistic sources of noise and systematic effects present in the real-world system will be injected into the simulations

    Periodic Astrometric Signal Recovery through Convolutional Autoencoders

    Get PDF
    Astrometric detection involves a precise measurement of stellar positions, and is widely regarded as the leading concept presently ready to find earth-mass planets in temperate orbits around nearby sun-like stars. The TOLIMAN space telescope[39] is a low-cost, agile mission concept dedicated to narrow-angle astrometric monitoring of bright binary stars. In particular the mission will be optimised to search for habitable-zone planets around Alpha Centauri AB. If the separation between these two stars can be monitored with sufficient precision, tiny perturbations due to the gravitational tug from an unseen planet can be witnessed and, given the configuration of the optical system, the scale of the shifts in the image plane are about one millionth of a pixel. Image registration at this level of precision has never been demonstrated (to our knowledge) in any setting within science. In this paper we demonstrate that a Deep Convolutional Auto-Encoder is able to retrieve such a signal from simplified simulations of the TOLIMAN data and we present the full experimental pipeline to recreate out experiments from the simulations to the signal analysis. In future works, all the more realistic sources of noise and systematic effects present in the real-world system will be injected into the simulations.Comment: Preprint version of the manuscript to appear in the Volume "Intelligent Astrophysics" of the series "Emergence, Complexity and Computation", Book eds. I. Zelinka, D. Baron, M. Brescia, Springer Nature Switzerland, ISSN: 2194-728

    Procedure Based on External Quantum Efficiency for Reliable Characterization of Perovskite Solar Cells

    Get PDF
    Perovskite solar cells PSCs have the potential for widespread application, but challenges remain for a reliable characterization of their performance. Standardized protocols for measuring and reporting are still debated. Focusing on the short circuit current density J SC , current voltage characteristics J V and external quantum efficiency EQE are collected to estimate the parameter. Still, they often provide a mismatch above 1 amp; 8201;mA amp; 8201;cm amp; 8722;2, resulting in a possible 5 or higher error. Combining experimental data and optical simulations, it is demonstrated that the EQE can provide a reliable estimate of the J SC that could otherwise easily be overestimated by J V. With access to the internally transmitted light through simulations, an upper limit for EQE is defined depending on the front layers. Details on the origin of the spectral shape and contributions to the optical losses are obtained with further optical simulations, providing hints for cell optimization to achieve a photocurrent gain. The authors use solution processed n i p PSCs with triple cation mixed halide absorbers as demonstrators and ultimately come to the proposal of an upgrade of the present best practices in PSC efficiency measurements. Still, the approach and conclusions are general and apply to cells with all designs and chemical formulation

    SKA Science Data Challenge 2: analysis and results

    Get PDF
    The Square Kilometre Array Observatory (SKAO) will explore the radio sky to new depths in order to conduct transformational science. SKAO data products made available to astronomers will be correspondingly large and complex, requiring the application of advanced analysis techniques to extract key science findings. To this end, SKAO is conducting a series of Science Data Challenges, each designed to familiarise the scientific community with SKAO data and to drive the development of new analysis techniques. We present the results from Science Data Challenge 2 (SDC2), which invited participants to find and characterise 233245 neutral hydrogen (Hi) sources in a simulated data product representing a 2000~h SKA MID spectral line observation from redshifts 0.25 to 0.5. Through the generous support of eight international supercomputing facilities, participants were able to undertake the Challenge using dedicated computational resources. Alongside the main challenge, `reproducibility awards' were made in recognition of those pipelines which demonstrated Open Science best practice. The Challenge saw over 100 participants develop a range of new and existing techniques, with results that highlight the strengths of multidisciplinary and collaborative effort. The winning strategy -- which combined predictions from two independent machine learning techniques to yield a 20 percent improvement in overall performance -- underscores one of the main Challenge outcomes: that of method complementarity. It is likely that the combination of methods in a so-called ensemble approach will be key to exploiting very large astronomical datasets.Comment: Under review by MNRAS; 28 pages, 16 figure

    Euclid preparation. Measuring detailed galaxy morphologies for Euclid with Machine Learning

    Full text link
    The Euclid mission is expected to image millions of galaxies with high resolution, providing an extensive dataset to study galaxy evolution. We investigate the application of deep learning to predict the detailed morphologies of galaxies in Euclid using Zoobot a convolutional neural network pretrained with 450000 galaxies from the Galaxy Zoo project. We adapted Zoobot for emulated Euclid images, generated based on Hubble Space Telescope COSMOS images, and with labels provided by volunteers in the Galaxy Zoo: Hubble project. We demonstrate that the trained Zoobot model successfully measures detailed morphology for emulated Euclid images. It effectively predicts whether a galaxy has features and identifies and characterises various features such as spiral arms, clumps, bars, disks, and central bulges. When compared to volunteer classifications Zoobot achieves mean vote fraction deviations of less than 12% and an accuracy above 91% for the confident volunteer classifications across most morphology types. However, the performance varies depending on the specific morphological class. For the global classes such as disk or smooth galaxies, the mean deviations are less than 10%, with only 1000 training galaxies necessary to reach this performance. For more detailed structures and complex tasks like detecting and counting spiral arms or clumps, the deviations are slightly higher, around 12% with 60000 galaxies used for training. In order to enhance the performance on complex morphologies, we anticipate that a larger pool of labelled galaxies is needed, which could be obtained using crowdsourcing. Finally, our findings imply that the model can be effectively adapted to new morphological labels. We demonstrate this adaptability by applying Zoobot to peculiar galaxies. In summary, our trained Zoobot CNN can readily predict morphological catalogues for Euclid images.Comment: 27 pages, 26 figures, 5 tables, submitted to A&
    corecore