20 research outputs found

    RPB5-Mediating Protein(RMP)の細胞局在と機能パートナー

    Get PDF
    取得学位 : 博士(医学), 学位授与番号 : 医博甲第1651号, 学位授与年月日 : 平成16年9月30日, 学位授与大学 : 金沢大

    Mutational analysis of human RNA polymerase II subunit 5 (RPB5): The residues critical for interactions with TFIIF subunit RAP30 and hepatitis B virus X protein

    Get PDF
    金沢大学がん研究所RNA polymerase II (RNAPII) subunit 5 (RPB5) is positioned close to DNA downstream of the initiation site and is the site of interaction with several regulators. Hepatitis B virus X protein (HBx) binds the central part of RPB5 to modulate activated transcription, and TFIIF subunit RAP30 interacts with the same part of RPB5 that is critical for the association between TFIIF and RNAPII. However the residues necessary for these interactions remain unknown. Here we report systematic mutagenesis of the central part of RPB5 using two-step alanine scanning libraries to pinpoint critical residues for its binding to RAP30 in the TFIIF complex and/or to HBx, and identified these residues in both mammalian cells and in an in vitro binding assay. Four residues, F76, I104, T111 and S113, are critical for both TFIIF- and HBx-binding, indicating the overlapping nature of the sites of interaction. In addition, V74 and N98 are required for HBx-binding, and T56 and L58 are needed for RAP30-binding. Interestingly the residues exposed to solvent, T111 and S113, are very close to the DNA, implying that two factors may modulate the interaction between DNA and RPB5. © 2005 The Japanese Biochemical Society

    Subcellular Localization of RPB5-Mediating Protein and Its Putative Functional Partner

    No full text
    We previously identified a novel cellular protein, RPB5-mediating protein (RMP), that retains corepressor activity and functionally antagonizes transcriptional modulation via hepatitis B virus X protein. The subcellular localization of RMP was examined using green fluorescent protein-fused protein forms. We found that a nuclear localization signal (NLS) and a coiled-coil (CC) domain functioning as a cytoplasmic localization signal (CLS) are important for the subcellular localization of RMP. The CLS apparently acts dominantly, since RMP was mostly localized in the cytoplasm with weak and diffuse signals in the nucleus, and the NLS was indispensable for the nuclear localization of RMP only in the absence of the CLS. Using a yeast two-hybrid method, we isolated a putative corepressor, DNA methyltransferase 1-associating protein (DMAP1), which was found to bind to the CC domain of RMP. DMAP1 facilitated the nuclear localization of RMP and the corepressor activity of RMP in a dose-dependent manner by interacting with the CC domain of RMP. These results are discussed in light of a recent paper showing a novel evolutionarily conserved role of URI in the TOR signaling pathway
    corecore