16 research outputs found

    Atomic Layer Deposition Nucleation Dependence on Diamond Surface Termination

    Full text link
    Surface termination and interfacial interactions are critical for advanced solid-state quantum applications. In this paper, we demonstrate that atomic layer deposition (ALD) can both provide valuable insight on the chemical environment of the surface, having sufficient sensitivity to distinguish between the common diamond (001) surface termination types and passivate these interfaces as desired. We selected diamond substrates exhibiting both smooth and anomalously rough surfaces to probe the effect of morphology on ALD nucleation. We use high resolution in situ spectroscopic ellipsometry to monitor the surface reaction with sub-angstrom resolution, to evaluate the nucleation of an ALD Al2O3 process as a function of different ex and in situ treatments to the diamond surface. In situ water dosing and high vacuum annealing provided the most favorable environment for nucleation of dimethylaluminum isopropoxide and water ALD. Hydrogen termination passivated both smooth and rough surfaces while triacid cleaning passivated the smooth surface only, with striking effectiveness.Comment: 31 pages, 14 figure

    Quantifying the limits of controllability for the nitrogen-vacancy electron spin defect

    Full text link
    Solid-state electron spin qubits, like the nitrogen-vacancy center in diamond, rely on control sequences of population inversion to enhance sensitivity and improve device coherence. But even for this paradigmatic system, the fundamental limits of population inversion and potential impacts on applications like quantum sensing have not been assessed quantitatively. Here, we perform high accuracy simulations beyond the rotating wave approximation, including explicit unitary simulation of neighboring nuclear spins. Using quantum optimal control, we identify analytical pulses for the control of a qubit subspace within the spin-1 ground state and quantify the relationship between pulse complexity, control duration, and fidelity. We find exponentially increasing amplitude and bandwidth requirements with reduced control duration and further quantify the emergence of non-Markovian effects for multipulse sequences using sub-nanosecond population inversion. From this, we determine that the reduced fidelity and non-Markovianity is due to coherent interactions of the electron spin with the nuclear spin environment. Ultimately, we identify a potentially realizable regime of nanosecond control duration for high-fidelity multipulse sequences. These results provide key insights into the fundamental limits of quantum information processing using electron spin defects in diamond.Comment: 9 pages, 5 figure

    Scanning X-ray Diffraction Microscopy for Diamond Quantum Sensing

    Full text link
    Understanding nano- and micro-scale crystal strain in CVD diamond is crucial to the advancement of diamond quantum technologies. In particular, the presence of such strain and its characterization present a challenge to diamond-based quantum sensing and information applications -- as well as for future dark matter detectors where directional information of incoming particles is encoded in crystal strain. Here, we exploit nanofocused scanning X-ray diffraction microscopy to quantitatively measure crystal deformation from growth defects in CVD diamond with high spatial and strain resolution. Combining information from multiple Bragg angles allows stereoscopic three-dimensional reconstruction of strained volumes; the diffraction results are validated via comparison to optical measurements of the strain tensor based on spin-state-dependent spectroscopy of ensembles of nitrogen vacancy (NV) centers in the diamond. Our results open a path towards directional detection of dark matter via X-ray measurement of crystal strain, and provide a new tool for diamond growth analysis and improvement of defect-based sensing.Comment: 15 pages, 17 figures (incl. Supplemental Material

    Guiding Diamond Spin Qubit Growth with Computational Methods

    Full text link
    The nitrogen vacancy (NV) center in diamond, a well-studied, optically active spin defect, is the prototypical system in many state of the art quantum sensing and communication applications. In addition to the enticing properties intrinsic to the NV center, its diamond host's nuclear and electronic spin baths can be leveraged as resources for quantum information, rather than considered solely as sources of decoherence. However, current synthesis approaches result in stochastic defect spin positions, reducing the technology's potential for deterministic control and yield of NV-spin bath systems, as well as scalability and integration with other technologies. Here, we demonstrate the use of theoretical calculations of electronic central spin decoherence as an integral part of an NV-spin bath synthesis workflow, providing a path forward for the quantitative design of NV center-based quantum sensing systems. We use computationally generated coherence data to characterize the properties of single NV center qubits across relevant growth parameters to find general trends in coherence time distributions dependent on spin bath dimensionality and density. We then build a maximum likelihood estimator with our theoretical model, enabling the characterization of a test sample through NV T2* measurements. Finally, we explore the impact of dimensionality on the yield of strongly coupled electron spin systems. The methods presented herein are general and applicable to other qubit platforms that can be appropriately simulated.Comment: 12 pages, 6 figure

    Deterministic nanoscale quantum spin-defect implantation and diffraction strain imaging

    Get PDF
    Local crystallographic features negatively affect quantum spin defects by changing the local electrostatic environment, often resulting in degraded or varied qubit optical and coherence properties. Few tools exist that enable the deterministic synthesis and study of such intricate systems on the nano-scale, making defect-to-defect strain environment quantification difficult. In this paper, we highlight state-of-the-art capabilities from the U.S. Department of Energy's Nanoscale Science Research Centers that directly address these shortcomings. Specifically, we demonstrate how complementary capabilities of nano-implantation and nano-diffraction can be used to demonstrate the quantum relevant, spatially deterministic creation of neutral divacancy centers in 4H silicon carbide, while investigating and characterizing these systems on the ⩽25 nm\leqslant 25\,{\rm{nm}} scale with strain sensitivities on the order of 1×10−6,1\times {10}^{-6}, relevant to defect formation dynamics. This work lays the foundation for ongoing studies into the dynamics and deterministic formation of low strain homogeneous quantum relevant spin defects in the solid state

    Microwave-based quantum control and coherence protection of tin-vacancy spin qubits in a strain-tuned diamond membrane heterostructure

    Full text link
    Robust spin-photon interfaces in solids are essential components in quantum networking and sensing technologies. Ideally, these interfaces combine a long-lived spin memory, coherent optical transitions, fast and high-fidelity spin manipulation, and straightforward device integration and scaling. The tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K. However, the SnV spin lacks efficient microwave control and its spin coherence degrades with higher temperature. In this work, we introduce a new platform that overcomes these challenges - SnV centers in uniformly strained thin diamond membranes. The controlled generation of crystal strain introduces orbital mixing that allows microwave control of the spin state with 99.36(9) % gate fidelity and spin coherence protection beyond a millisecond. Moreover, the presence of crystal strain suppresses temperature dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223(10) μ{\mu}s at 4 K, a widely accessible temperature in common cryogenic systems. Critically, the coherence of optical transitions is unaffected by the elevated temperature, exhibiting nearly lifetime-limited optical linewidths. Combined with the compatibility of diamond membranes with device integration, the demonstrated platform is an ideal spin-photon interface for future quantum technologies
    corecore