20 research outputs found

    1. Transport of Mass, Momentum and Energy in Planetary Magnetodisc Regions

    Get PDF
    The rapid rotation of the gas giant planets, Jupiter and Saturn, leads to the formation of magnetodisc regions in their magnetospheric environments. In these regions, relatively cold plasma is confined towards the equatorial regions, and the magnetic field generated by the azimuthal (ring) current adds to the planetary dipole, forming radially distended field lines near the equatorial plane. The ensuing force balance in the equatorial magnetodisc is strongly influenced by centrifugal stress and by the thermal pressure of hot ion populations, whose thermal energy is large compared to the magnitude of their centrifugal potential energy. The sources of plasma for the Jovian and Kronian magnetospheres are the respective satellites Io (a volcanic moon) and Enceladus (an icy moon). The plasma produced by these sources is globally transported outwards through the respective magnetosphere, and ultimately lost from the system. One of the most studied mechanisms for this transport is flux tube interchange, a plasma instability which displaces mass but does not displace magnetic flux—an important observational constraint for any transport process. Pressure anisotropy is likely to play a role in the loss of plasma from these magnetospheres. This is especially the case for the Jovian system, which can harbour strong parallel pressures at the equatorial segments of rotating, expanding flux tubes, leading to these regions becoming unstable, blowing open and releasing their plasma. Plasma mass loss is also associated with magnetic reconnection events in the magnetotail regions. In this overview, we summarise some important observational and theoretical concepts associated with the production and transport of plasma in giant planet magnetodiscs. We begin by considering aspects of force balance in these systems, and their coupling with the ionospheres of their parent planets. We then describe the role of the interaction between neutral and ionized species, and how it determines the rate at which plasma mass and momentum are added to the magnetodisc. Following this, we describe the observational properties of plasma injections, and the consequent implications for the nature of global plasma transport and magnetodisc stability. The theory of the flux tube interchange instability is reviewed, and the influences of gravity and magnetic curvature on the instability are described. The interaction between simulated interchange plasma structures and Saturn’s moon Titan is discussed, and its relationship to observed periodic phenomena at Saturn is described. Finally, the observation, generation and evolution of plasma waves associated with mass loading in the magnetodisc regions is reviewed

    On the Relation Between Jupiter's Aurora and the Dawnside Current Sheet

    Get PDF
    Jupiter's auroral emission is a spectacular phenomenon that provides insight into energy release processes related to the coupling of its magnetosphere and ionosphere. This energy release is influenced by solar wind conditions. Using joint observations from Juno and the Hubble Space Telescope (HST), we statistically investigate the relationship between auroral power and current sheet variations under different solar wind conditions. In this study, we reveal that during global main auroral brightening events that are closely connected to solar wind compressions, the dawn side current sheet is substantially thinner than during times when a quiet auroral morphology is present. Furthermore, the total current intensity in the current sheet is found to increase under solar wind compression conditions compared to the quiet period. These findings provide important observational evidence for how magnetospheric dynamics driven by solar wind behavior affect auroral activity, deepening our understanding of the coupling between Jupiter's magnetosphere and ionosphere

    Long-standing Small-scale Reconnection Processes at Saturn Revealed by Cassini

    Get PDF
    The internal mass source from the icy moon Enceladus in Saturn’s rapidly rotating magnetosphere drives electromagnetic dynamics in multiple spatial and temporal scales. The distribution and circulation of the internal plasma and associated energy are thus crucial in understanding Saturn’s magnetospheric environment. Magnetic reconnection is one of the key processes in driving plasma and energy transport in the magnetosphere, and also a fundamental plasma process in energizing charged particles. Recent works suggested that reconnection driven by Saturn’s rapid rotation might appear as a chain of microscale structures, named drizzle-like reconnection. The drizzle-like reconnection could exist not only in the nightside magnetodisk, but also in the dayside magnetodisk. Here, using in situ measurements from the Cassini spacecraft, we report multiple reconnection sites that were successively detected during a time interval longer than one rotation period. The time separation between two adjacently detected reconnection sites can be much less than one rotation period, implying that the reconnection processes are likely small-scale, or frequently repetitive. The spatial distribution of the identified long-standing multiple small reconnection site sequences shows no significant preference on local times. We propose that the small reconnection sites discussed in this Letter are rotationally driven and rotate with the magnetosphere. Since the reconnection process on Saturn can be long-durational, the rotational regime can cause these smallscale reconnection sites to spread to all local times, resulting in global release of energy and mass from the magnetosphere

    Hourly Periodic Variations of Ultralow-Frequency (ULF) Waves in Jupiter's Magnetosheath

    No full text
    Periodic variations are widely identified in the Jovian system, varying from 10 s of seconds to several days or even longer. These processes are strongly influenced by solar wind conditions, planetary rotation and Io's volcanic activity. Ultralow-frequency (ULF) waves at 10 s of minutes, which are the typical time scale of field-line resonance, are considered as a crucial process in driving the Jovian energy circulation. The longer time-scale periodicities are likely associated with global mass circulation. In this study, we focus on multihour variations of the ULF wave energy, which are difficult to identify within the magnetosphere due to the rapid planetary rotation modulation. Using the magnetic field observations from Juno and Galileo in Jupiter's magnetosheath, we found multiple significant multihour periodicities, widely distributed from 2 to 10 hr, peaked at different values from case to case. The most common periodicities were between 3 and 5 hr, existing in both the dawn and dusk sides. These common periodicities are likely associated with the energy transport from the inside to the magnetosheath

    Missing link found?

    No full text

    Attitudes of dermatologists in the southeastern United States regarding treatment of alopecia areata: a cross-sectional survey study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little evidence exists to guide treatment of alopecia areata (AA). The current practices in treatment of children compared to adults and of progressive stages of hair loss are unknown. The objective of this study was to examine the current practices of southeastern United States dermatologists for the treatment of AA.</p> <p>Methods</p> <p>Dermatologists were sent anonymous questionnaires regarding their treatment practices by mail. Respondents' frequencies of treatment in children compared to adults and in patchy hair loss compared to widespread hair loss were compared with Wilcoxon signed-ranks tests and Friedman tests. As a secondary source, the National Alopecia Areata Registry (NAAR) database was analyzed for patients' treatment histories.</p> <p>Results</p> <p>Survey results suggested that dermatologists recommend treatment less frequently for children than adults and for more advanced hair loss. NAAR data confirmed that offering no treatment for AA is relatively common.</p> <p>Conclusion</p> <p>Dermatologists' treatment of AA is inconsistent. A stronger evidence base will provide more consistent treatment options.</p

    Gyro-resonant electron acceleration at Jupiter

    No full text
    According to existing theory, electrons are accelerated up to ultra-relativistic energies(1) inside Jupiter's magnetic field by betatron and Fermi processes as a result of radial diffusion towards the planet and conservation of the first two adiabatic invariants(2-4). Recently, it has been shown that gyro-resonant electron acceleration by whistler-mode waves(5,6) is a major, if not dominant(7), process for accelerating electrons inside the Earth's outer radiation zone, and has redefined our concept for producing the Van Allen radiation belts(8). Here, we present a survey of data from the Galileo spacecraft at Jupiter, which shows that intense whistler-mode waves are observed outside the orbit of the moon Io and, using Fokker-Planck simulations, are strong enough to accelerate electrons to relativistic energies on timescales comparable to that for electron transport. Gyroresonant acceleration is most effective between 6 and 12 jovian radii (R-j) and provides the missing step in the production of intense synchrotron radiation from Jupiter(1,9)
    corecore