28 research outputs found

    A note on moments of derivatives of characteristic polynomials

    Full text link
    We present a simple technique to compute moments of derivatives of unitary characteristic polynomials. The first part of the technique relies on an idea of Bump and Gamburd: it uses orthonormality of Schur functions over unitary groups to compute matrix averages of characteristic polynomials. In order to consider derivatives of those polynomials, we here need the added strength of the Generalized Binomial Theorem of Okounkov and Olshanski. This result is very natural as it provides coefficients for the Taylor expansions of Schur functions, in terms of shifted Schur functions. The answer is finally given as a sum over partitions of functions of the contents. One can also obtain alternative expressions involving hypergeometric functions of matrix arguments.Comment: 12 page

    Integrality of hook ratios

    Get PDF
    We study integral ratios of hook products of quotient partitions. This question is motivated by an analogous question in number theory concerning integral factorial ratios. We prove an analogue of a theorem of Landau that already applied in the factorial case. Under the additional condition that the ratio has one more factor on the denominator than the numerator, we provide a complete classification. Ultimately this relies on Kneser's theorem in additive combinatorics.Comment: 13 pages, 3 figures Keywords: partitions, hook products, Kneser's theorem, McKay numbers, Beurling-Nyman criterio

    A multiset hook length formula and some applications

    Get PDF
    A multiset hook length formula for integer partitions is established by using combinatorial manipulation. As special cases, we rederive three hook length formulas, two of them obtained by Nekrasov-Okounkov, the third one by Iqbal, Nazir, Raza and Saleem, who have made use of the cyclic symmetry of the topological vertex. A multiset hook-content formula is also proved.Comment: 19 pages; 3 figure

    Difference operators for partitions under the Littlewood decomposition

    Full text link
    The concept of tt-difference operator for functions of partitions is introduced to prove a generalization of Stanley's theorem on polynomiality of Plancherel averages of symmetric functions related to contents and hook lengths. Our extension uses a generalization of the notion of Plancherel measure, based on walks in the Young lattice with steps given by the addition of tt-hooks. It is well-known that the hook lengths of multiples of tt can be characterized by the Littlewood decomposition. Our study gives some further information on the contents and hook lengths of other congruence classes modulo tt.Comment: 24 page

    Integrality of hook ratios

    Get PDF
    We study integral ratios of hook products of quotient partitions. This question is motivated by an analogous question in number theory concerning integral factorial ratios. We prove an analogue of a theorem of Landau that already applied in the factorial case. Under the additional condition that the ratio has one more factor on the denominator than the numerator, we provide a complete classification. Ultimately this relies on Kneser's theorem in additive combinatorics
    corecore