44 research outputs found
Electroweak Physics
The results of high precision weak neutral current (WNC), Z-pole, and high
energy collider electroweak experiments have been the primary prediction and
test of electroweak unification. The electroweak program is briefly reviewed
from a historical perspective. Current changes, anomalies, and things to watch
are summarized, and the implications for the standard model and beyond
discussed.Comment: 12 pages, invited talk presented at the Conference on the
Intersections of Particle and Nuclear Physics (CIPANP 2003), New York, May
200
Higgs production and decay: Analytic results at next-to-leading order QCD
The virtual two-loop corrections for Higgs production in gluon fusion are
calculated analytically in QCD for arbitrary Higgs and quark masses. Both
scalar and pseudo-scalar Higgs bosons are considered. The results are obtained
by expanding the known one-dimensional integral representation in terms of
m_H/m_q, and matching it with a suitably chosen ansatz of Harmonic
Polylogarithms. This ansatz is motivated by the known analytic result for the
Higgs decay rate into two photons. The method also allows us to check this
result and to extend it to the pseudo-scalar decay rate.Comment: LaTeX, 16 pages, 5 figures (8 eps-files
Photon Radiation with MadDipole
We present the automation of a subtraction method for photon radiation using
the dipole formalism within the MadGraph framework. The subtraction terms are
implemented both in dimensional regularization and mass regularization for
massless and massive cases and non-collinear-safe observables are accounted
for.Comment: 23 pages, 2 figures, minor additions, references added, version
published in JHE
Super AutoDipole
The publicly available package for an automated dipole subtraction,
AutoDipole, is extended to include the SUSY dipoles in the MSSM. All fields in
the SM and the MSSM are available. The code is checked against the analytical
expressions for a simple process. The extended package makes it possible to
compute the QCD NLO corrections to SUSY multi-parton processes like the stop
pair production plus jets at the LHC.Comment: 16 pages, 1 figure, v2: a few typos to match the published version in
Eur. Phys. J.
Challenging SO(10) SUSY GUTs with family symmetries through FCNC processes
We perform a detailed analysis of the SO(10) SUSY GUT model with D3 family
symmetry of Dermisek and Raby (DR). The model is specified in terms of 24
parameters and predicts, as a function of them, the whole MSSM set of
parameters at low energy scales. Concerning the SM subset of such parameters,
the model is able to give a satisfactory description of the quark and lepton
masses, of the PMNS matrix and of the CKM matrix. We perform a global fit to
the model, including flavour changing neutral current (FCNC) processes Bs -->
mu+ mu-, B --> Xs gamma, B --> Xs l+ l- and the B(d,s) - bar B(d,s) mass
differences Delta M(d,s) as well as the flavour changing (FC) process B+ -->
tau+ nu. These observables provide at present the most sensitive probe of the
SUSY mass spectrum and couplings predicted by the model. Our analysis
demonstrates that the simultaneous description of the FC observables in
question represents a serious challenge for the DR model, unless the masses of
the scalars are moved to regions which are problematic from the point of view
of naturalness and probably beyond the reach of the LHC. We emphasize that this
problem could be a general feature of SUSY GUT models with third generation
Yukawa unification and weak-scale minimal flavour violation.Comment: 1 + 37 pages, 5 figures, 11 tables. v3: minor typos fixed. Matches
JHEP published versio
Light MSSM Higgs boson mass to three-loop accuracy
The light CP even Higgs boson mass, Mh, is calculated to three-loop accuracy
within the Minimal Supersymmetric Standard Model (MSSM). The result is
expressed in terms of DRbar parameters and implemented in the computer program
H3m. The calculation is based on the proper approximations and their
combination in various regions of the parameter space. The three-loop effects
to Mh are typically of the order of a few hundred MeV and opposite in sign to
the two-loop corrections. The remaining theory uncertainty due to higher order
perturbative corrections is estimated to be less than 1 GeV.Comment: 39 pages, 13 figures. v2: minor changes, typos fixe
Electroweak physics
Work on electroweak precision calculations and event generators for electroweak physics studies at current and future colliders is summarized
Mass Bounds on a Very Light Neutralino
Within the Minimal Supersymmetric Standard Model (MSSM) we systematically
investigate the bounds on the mass of the lightest neutralino. We allow for
non-universal gaugino masses and thus even consider massless neutralinos, while
assuming in general that R-parity is conserved. Our main focus are laboratory
constraints. We consider collider data, precision observables, and also rare
meson decays to very light neutralinos. We then discuss the astrophysical and
cosmological implications. We find that a massless neutralino is allowed by all
existing experimental data and astrophysical and cosmological observations.Comment: 36 pages, 13 figures, minor modification in astro-physical bounds.
EPJC versio