3 research outputs found

    Investigation of error detection capabilities of phantom, EPID and MLC log file based IMRT QA methods

    Get PDF
    A patient specific quality assurance (QA) should detect errors that originate anywhere in the treatment planning process. However, the increasing complexity of treatment plans has increased the need for improvements in the accuracy of the patient specific pretreatment verification process. This has led to the utilization of higher resolution QA methods such as the electronic portal imaging device (EPID) as well as MLC log files and it is important to know the types of errors that can be detected with these methods. In this study, we will compare the ability of three QA methods (Delta 4 ®, MU-EPID, Dynalog QA) to detect specific errors. Multileaf collimator (MLC) errors, gantry angle, and dose errors were introduced into five volumetric modulated arc therapy (VMAT) plans for a total of 30 plans containing errors. The original plans (without errors) were measured five times with each method to set a threshold for detectability using two standard deviations from the mean and receiver operating characteristic (ROC) derived limits. Gamma passing percentages as well as percentage error of planning target volume (PTV) were used for passing determination. When applying the standard 95% pass rate at 3%/3 mm gamma analysis errors were detected at a rate of 47, 70, and 27% for the Delta 4 , MU-EPID and Dynalog QA respectively. When using thresholds set at 2 standard deviations from our base line measurements errors were detected at a rate of 60, 30, and 47% for the Delta 4 , MU-EPID and Dynalog QA respectively. When using ROC derived thresholds errors were detected at a rate of 60, 27, and 47% for the Delta 4 , MU-EPID and Dynalog QA respectively. When using dose to the PTV and the Dynalog method 11 of the 15 small MLC errors were detected while none were caught using gamma analysis. A combination of the EPID and Dynalog QA methods (scaling Dynalog doses using EPID images) matches the detection capabilities of the Delta 4 by adding additional comparison metrics. These additional metrics are vital in relating the QA measurement to the dose received by the patient which is ultimately what is being confirmed

    On the evaluation of patient specific IMRT QA using EPID, dynalog files and patient anatomy

    Get PDF
    Purpose: This research, investigates the viability of using the Electronic portal imaging device (EPID) coupled with the treatment planning system (TPS), to calculate the doses delivered and verify agreement with the treatment plan. The results of QA analysis using the EPID, Delta4 and fluence calculations using the multi-leaf collimator (MLC) dynalog files on 10 IMRT patients are presented in this study.Methods: EPID Fluence Images in integrated mode and Dynalog files for each field were acquired for 10 IMRT (6MV) patients and processed through an in house MatLab program to create an opening density matrix (ODM) which was used as the input fluence for dose calculation with the TPS (Pinnacle3, Philips). The EPID used in this study was the aSi1000 Varian on a Novalis TX linac equipped with high definition MLC. The resulting dose distributions were then exported to VeriSoft (PTW) where a 3D gamma was calculated using 3 mm-3% criteria. The Scandidos Delta4 phantom was also used to measure a 2D dose distribution for all 10 patients and a 2D gamma was calculated for each patient using the Delta4 software.Results: The average 3D gamma for all 10 patients using the EPID images was 98.2% ± 2.6%. The average 3D gamma using the dynalog files was 94.6% ± 4.9%. The average 2D gamma from the Delta4 was 98.1% ± 2.5%. The minimum 3D gamma for the EPID and dynalog reconstructed dose distributions was found on the same patient which had a very large PTV, requiring the jaws to open to the maximum field size. Conclusion: Use of the EPID, combined with a TPS is a viable method for QA of IMRT plans. A larger ODM size can be implemented to accommodate larger field sizes. An adaptation of this process to Volumetric Arc Therapy (VMAT) is currently under way.-----------------------------Cite this article as: Defoor D, Mavroidis P, Quino L, Gutierrez A, Papanikolaou N, Stathakis S. On the evaluation of patient specific IMRT QA using EPID, dynalog files and patient anatomy. Int J Cancer Ther Oncol 2014; 2(2):020219. DOI: 10.14319/ijcto.0202.1

    On the evaluation of patient specific IMRT QA using EPID, dynalog files and patient anatomy

    No full text
    Purpose: This research, investigates the viability of using the Electronic portal imaging device (EPID) coupled with the treatment planning system (TPS), to calculate the doses delivered and verify agreement with the treatment plan. The results of QA analysis using the EPID, Delta4 and fluence calculations using the multi-leaf collimator (MLC) dynalog files on 10 IMRT patients are presented in this study.Methods: EPID Fluence Images in integrated mode and Dynalog files for each field were acquired for 10 IMRT (6MV) patients and processed through an in house MatLab program to create an opening density matrix (ODM) which was used as the input fluence for dose calculation with the TPS (Pinnacle3, Philips). The EPID used in this study was the aSi1000 Varian on a Novalis TX linac equipped with high definition MLC. The resulting dose distributions were then exported to VeriSoft (PTW) where a 3D gamma was calculated using 3 mm-3% criteria. The Scandidos Delta4 phantom was also used to measure a 2D dose distribution for all 10 patients and a 2D gamma was calculated for each patient using the Delta4 software.Results: The average 3D gamma for all 10 patients using the EPID images was 98.2% ± 2.6%. The average 3D gamma using the dynalog files was 94.6% ± 4.9%. The average 2D gamma from the Delta4 was 98.1% ± 2.5%. The minimum 3D gamma for the EPID and dynalog reconstructed dose distributions was found on the same patient which had a very large PTV, requiring the jaws to open to the maximum field size. Conclusion: Use of the EPID, combined with a TPS is a viable method for QA of IMRT plans. A larger ODM size can be implemented to accommodate larger field sizes. An adaptation of this process to Volumetric Arc Therapy (VMAT) is currently under way.-----------------------------Cite this article as: Defoor D, Mavroidis P, Quino L, Gutierrez A, Papanikolaou N, Stathakis S. On the evaluation of patient specific IMRT QA using EPID, dynalog files and patient anatomy. Int J Cancer Ther Oncol 2014; 2(2):020219. DOI: 10.14319/ijcto.0202.19</p
    corecore