2,519 research outputs found

    Direct Numerical Simulation of Complex Gas-Liquid-Solid Flows using a Combined\ud Immersed Boundary (IB) and Volume Of Fluid (VOF) Approach

    Get PDF
    In this paper a simulation model is presented for the Direct Numerical Simulation (DNS) of complex multi-fluid flows in which simultaneously (moving) deformable (drops or bubbles) and non-deformable (moving) elements (particles) are present, possibly with the additional presence of free surfaces. Our model combines the VOF model developed by van Sint Annaland et al. (2005) and the Immersed Boundary (IB) model The Volume of Fluid (VOF) part features i) an interface reconstruction technique based on piecewise linear interface representation ii) a three-dimensional version of the CSF model of Brackbill et al. (1992). The Immersed Boundary (IB) part incorporates both particle-fluid and particle-particle interaction via a Direct Forcing Method (DFM) and a hard sphere Discrete Particle (DP) approach. In our model a fixed (Eulerian) grid is utilized to solve the Navier-Stokes equations for the entire computational domain. The no-slip condition at the surface of the moving particles is enforced via a momentum source term which only acts in the vicinity of the particle surface. Specifically Lagrangian force points are used which are distributed evenly over the surface of the particle. Dissipative particle-particle and/or particle-wall collisions are accounted via a hard sphere DP approach using a three-parameter particle-particle interaction model accounting for normal and tangential restitution and tangential friction. The capabilities of the hybrid VOF-IB model are demonstrated with a number of examples in which complex topological changes in the interface are encountered

    Analysis of the fluidization behaviour and application of a novel spouted bed\ud apparatus for spray granulation and coating

    Get PDF
    Spouted beds are well known for their good mixing of the solid phase and for their intensive heat\ud and mass transfers between the fluid phase and the solid phase. Nearly isothermal conditions are\ud enabled which is of advantage for the treatment of granular solid materials in granulation,\ud agglomeration or coating processes. In this work the hydrodynamic behaviour of a novel spouted\ud bed apparatus with two horizontal and slit-shaped gas inlets is investigated by high-frequency\ud recordings of the gas phase pressure fluctuations over the entire bed. The hydrodynamic stable\ud operation domain, which is of importance for operating the apparatus, will be identified and\ud depicted in the Re-G-Ar-diagram by Mitev [1]. Another focus of this work is the simulation of the\ud spouting process by application of a continuum approach in FLUENT 6.2. The effect of the\ud frictional stresses on the hydrodynamic behaviour is examined by performing simulations with and\ud without consideration of friction. The angle of internal friction fi in Schaeffer`s [10] model will be\ud varied and the simulation results will be compared with experiments. It was found that the influence\ud of friction is not very big by application of the quite simple and empirical frictional viscosity model\ud by Schaeffer [10] basing on soil mechanical principles. Also the simulation results under negligence\ud of friction were similar to those under consideration of friction. Another part of this work is the\ud industrial application of the novel spouted bed in granulation and coating processes. Compared to\ud classical fluidized beds, a much narrower particle size distribution, a higher yield and a higher\ud product quality was obtained in the novel spouted be

    Direct numerical simulation of heat transport in dispersed gas-liquid two-phase flow using a front tracking approach

    Get PDF
    In this paper a simulation model is presented for the Direct Numerical Simulation (DNS) of heat transport in dispersed gas-liquid two-phase flow using the Front Tracking (FT) approach. Our model extends the FT model developed by van Sint Annaland et al. (2006) to non-isothermal conditions. In FT an unstructured dynamic mesh is used to represent and track the interface explicitly by a number of interconnected marker points. The Lagrangian representation of the interface avoids the necessity to reconstruct the interface from the local distribution of the fractions of the phases and, moreover, allows a direct and accurate calculation of the surface tension force circumventing the (problematic) computation of the interface curvature. The extended model is applied to predict the heat exchange rate between the liquid and a hot wall kept at a fixed temperature. It is found that the wall-to-liquid heat transfer coefficient exhibits a maximum in the vicinity of the bubble that can be attributed to the locally decreased thickness of the thermal boundary layer

    Effect of the liquid layer on the impact behaviour of particles

    Get PDF
    During a spray granulation process the moisture loading in fluidized beds has a great influence on\ud the inter-particle collision properties and hence on the flow behaviour. To study the influence of the\ud liquid layer as well as granule impact velocity on the impact behaviour free-fall experiments were\ud performed. During these experiments the g-Al2O3 granules were dropped from a predefined height\ud onto a liquid layer on the flat steel wall and the velocity-time curves were obtained using highspeed\ud video recording. The height of the liquid layer was varied from 50 mm to 1 mm. Moreover,\ud the tests were performed at different velocities and viscosities of liquid layer in the range of 1-300\ud mPa∙s. Both distilled water and water solutions of hydroxypropyl methylcellulose with different\ud concentrations (3, 6, 10 mass-%) were used.\ud The obtained restitution coefficients were compared with the experiments performed without liquid\ud film on the surface. For a granule impacted on a liquid film on the wall, the increase of liquid\ud viscosity decreases the restitution coefficient and thickness of liquid layer at which the granule\ud sticks. In the examined velocity range, with decreasing impact velocity the restitution coefficient\ud greatly decreases. To explain the obtained effects the force and energy balances for a particle\ud impacted on a liquid layer on the wall were derived. Both contributions to energy absorption\ud (granule-liquid layer and granule-wall contacts) have been taken into consideratio

    Discrete element modeling and fibre optical measurements for fluidized bed spray granulation

    Get PDF
    Spout fluidized beds are frequently used for the production of granules or\ud particles through granulation. The products find application in a large variety of\ud applications, for example detergents, fertilizers, pharmaceuticals and food. Spout fluidized\ud beds have a number of advantageous properties, such as a high mobility of the particles,\ud which prevents undesired agglomeration and yields excellent heat transfer properties. The\ud particle growth mechanism in a spout fluidized bed as function of particle-droplet\ud interaction has a profound influence on the particle morphology and thus on the product\ud quality. Nevertheless, little is known about the details of the granulation process. This is\ud mainly due to the fact that the granulation process is not visually accessible. In this work\ud we use fundamental, deterministic models to enable the detailed investigation of\ud granulation behaviour in a spout fluidized bed. A discrete element model is used\ud describing the dynamics of the continuous gas-phase and the discrete droplets and\ud particles. For each element momentum balances are solved. The momentum transfer\ud among each of the three phases is described in detail at the level of individual elements.\ud The results from the discrete element model simulations are compared with local\ud measurements of particle volume fractions as well as particle velocities by using a novel\ud fibre optical probe in a fluidized bed of 400 mm I.D. Simulations and experiments were\ud carried out for two different cases using Geldart B type aluminium oxide particles: a\ud freely bubbling fluidized bed and a spout fluidized bed with the presence of droplets. It is\ud demonstrated how the discrete element model can be used to obtain information about the\ud interaction of the discrete phases, i.e. the growth zone in a spout fluidized bed. Eventually\ud this kind of information can be used to obtain closure information required in more coarse\ud grained model
    • …
    corecore