28 research outputs found

    Effect of egg turning and incubation time on carbonic anhydrase gene expression in the blastoderm of the Japanese quail (Coturnix c. japonica)

    Get PDF
    (1) The gene expression of carbonic anhydrase, a key enzyme for the production sub-embryonic fluid (SEF), was assessed in turned and unturned eggs of the Japanese quail. The plasma membrane-associated isoforms CA IV, CAIX, CA XII, CA XIV, and the cytoplasmic isoform CA II, were investigated in the extra-embryonic tissue of the blastoderm and in embryonic blood. (2) Eggs were incubated at 37.6C, c. 60% R.H., and turned hourly (90 ) or left unturned. From 48 to 96 hours of incubation mRNA was extracted from blastoderm tissue, reverse-transcribed to cDNA and quantified by real-time qPCR using gene-specific primers. Blood collected at 96h was processed identically. (3) Blastoderm CAIV gene expression increased with the period of incubation only in turned eggs, with maxima at 84 and 96h of incubation. Only very low levels were found in blood. (4) Blastoderm CA II gene expression was greatest at 48 and 54h of incubation, subsequently declining to much lower levels and una ected by turning. Blood CA II gene expression was about 25-fold greater than that in the blastoderm. (5) The expression of CA IX in the blastoderm was the highest of all isoforms, yet unaffected by turning. CA XII did not amplify and CA XIV was present at unquantifiable low levels. (6) It is concluded that solely gene expression for CA IV is sensitive to egg turning, and that increased CA IV gene expression could account for the additional SEF mass found at 84-96h of incubation. in embryos of turned eggs

    Birds use structural properties when selecting materials for different parts of their nests

    Get PDF
    Bird nests can have various roles but all act as the location for incubation, so at least have to serve to hold and support the incubating bird and its clutch of eggs. Nest construction is species specific and the use of materials varies between different parts of the nest. At present we know very little about the role that these materials play in the structural characteristics of the nest. This study examined materials from deconstructed nests from four species of thrush (Turdidae) and two species of finch (Fringillidae) that all constructed nests made of woody stems. It was hypothesised that structural properties would vary within the different regions of a nest, with thicker and stronger materials being found in parts of the nest needing the most support. Secondly, it was predicted that structural properties would vary little between nests of members of the same family, but would be quite different between nests of different families. Nests were deconstructed to quantify the materials used in the cup lining, and the upper and lower parts of the outer nest. The 20 thickest pieces of material were selected from each nest part and for each piece, and their diameter and mass quantified. Each piece was then subjected to a three-point bending test using an Instron universal testing machine to determine its rigidity and bending strength. Placement of materials in the nest was non-random in all species. The materials used in the outer part of the nest were thicker, stronger and stiffer than those materials found in the cup lining. The extent to which these structural properties varied between families depended on where the material was taken from the nest. Both strength and rigidity strongly positively correlated with the diameter of the piece of material. We hypothesise that birds are not directly aware of the structural properties of the material per se but rather assess diameter and mass of the material when they pick it up by the bill. Using this information they decide on whether the piece is suitable for that appropriate stage of nest construction
    corecore