63 research outputs found
Distributed Information Management with Mobile Agents
With more users taking advantage of publicly accessible networks, such as corporate intranets and the Internet, larger amounts of information is becoming electronically distributed and disseminated. Distributed information management is an emerging technology for dealing with the problems of managing information that is spread across networks, users and applications. We present four categories that we consider being necessary to developing tools to undertake distributed information management tasks. To help model the dynamic and heterogeneous nature of a user's distributed information, we advocate the use of agents and agent technologies when building distributed information management applications. We present an agent-oriented architecture which is based around a concept of mobile agents, since they provide a convenient abstraction for modelling distributed applications
Towards a Framework for Developing Mobile Agents for Managing Distributed Information Resources
Distributed information management tools allow users to author, disseminate, discover and manage information within large-scale networked environments, such as the Internet. Agent technology provides the flexibility and scalability necessary to develop such distributed information management applications. We present a layered organisation that is shared by the specific applications that we build. Within this organisation we describe an architecture where mobile agents can move across distributed environments, integrate with local resources and other mobile agents, and communicate their results back to the user
Agents for Distributed Multimedia Information Management
This paper discusses the role of agents in a distributed multimedia information system (DMIS) engineered according to the principles of open hypermedia. It is based on the new generation of Microcosm, an open hypermedia system developed by the Multimedia Research Group at the University of Southampton. Microcosm provides a framework for supporting the three major roles of agents within open information systems: resource discovery, information integrity and navigation assistance. We present Microcosm and its agents, and discuss our current research in applying agent technology in this framework
Unifying Distributed Processing and Open Hypertext through a Heterogeneous Communication Model
A successful distributed open hypermedia system can be characterised by a scaleable architecture which is inherently distributed. While the architects of distributed hypermedia systems have addressed the issues of providing and retrieving distributed resources, they have often neglected to design systems with the inherent capability to exploit the distributed processing of this information. The research presented in this paper describes the construction and use of an open hypermedia system concerned equally with both of these facets
An Open Framework for Integrating Widely Distributed Hypermedia Resources
The success of the WWW has served as an illustration of how hypermedia functionality can enhance access to large amounts of distributed information. However, the WWW and many other distributed hypermedia systems offer very simple forms of hypermedia functionality which are not easily applied to existing applications and data formats, and cannot easily incorporate alternative functions which would aid hypermedia navigation to and from existing documents that have not been developed with hypermedia access in mind. This paper describes the extension to a distributed environment of the open hypermedia functionality of the Microcosm system, which is designed to support the provision of hypermedia access to a wide range of source material and application, and to offer straightforward extension of the system to incorporate new forms of information access
Implementing an Open Link Service for the World Wide Web
Links are the key element for changing a text into a hypertext, and yet the WWW provides limited linking facilities. Modelled on Open Hypermedi
Simple scoring system to predict in-hospital mortality after surgery for infective endocarditis
BACKGROUND:
Aspecific scoring systems are used to predict the risk of death postsurgery in patients with infective endocarditis (IE). The purpose of the present study was both to analyze the risk factors for in-hospital death, which complicates surgery for IE, and to create a mortality risk score based on the results of this analysis.
METHODS AND RESULTS:
Outcomes of 361 consecutive patients (mean age, 59.1\ub115.4 years) who had undergone surgery for IE in 8 European centers of cardiac surgery were recorded prospectively, and a risk factor analysis (multivariable logistic regression) for in-hospital death was performed. The discriminatory power of a new predictive scoring system was assessed with the receiver operating characteristic curve analysis. Score validation procedures were carried out. Fifty-six (15.5%) patients died postsurgery. BMI >27 kg/m2 (odds ratio [OR], 1.79; P=0.049), estimated glomerular filtration rate 55 mm Hg (OR, 1.78; P=0.032), and critical state (OR, 2.37; P=0.017) were independent predictors of in-hospital death. A scoring system was devised to predict in-hospital death postsurgery for IE (area under the receiver operating characteristic curve, 0.780; 95% CI, 0.734-0.822). The score performed better than 5 of 6 scoring systems for in-hospital death after cardiac surgery that were considered.
CONCLUSIONS:
A simple scoring system based on risk factors for in-hospital death was specifically created to predict mortality risk postsurgery in patients with IE
- …