2,492 research outputs found
Spin Excitations in a Fermi Gas of Atoms
We have experimentally investigated a spin excitation in a quantum degenerate
Fermi gas of atoms. In the hydrodynamic regime the damping time of the
collective excitation is used to probe the quantum behavior of the gas. At
temperatures below the Fermi temperature we measure up to a factor of 2
reduction in the excitation damping time. In addition we observe a strong
excitation energy dependence for this quantum statistical effect.Comment: 4 pages, 3 figure
Limits to Sympathetic Evaporative Cooling of a Two-Component Fermi Gas
We find a limit cycle in a quasi-equilibrium model of evaporative cooling of
a two-component fermion gas. The existence of such a limit cycle represents an
obstruction to reaching the quantum ground state evaporatively. We show that
evaporatively the \beta\mu ~ 1. We speculate that one may be able to cool an
atomic fermi gas further by photoassociating dimers near the bottom of the
fermi sea.Comment: Submitted to Phys. Rev
Pauli Blocking of Collisions in a Quantum Degenerate Atomic Fermi Gas
We have produced an interacting quantum degenerate Fermi gas of atoms
composed of two spin-states of magnetically trapped K. The relative
Fermi energies are adjusted by controlling the population in each spin-state.
Measurements of the thermodynamics reveal the resulting imbalance in the mean
energy per particle between the two species, which is as large as a factor of
1.4 at our lowest temperature. This imbalance of energy comes from a
suppression of collisions between atoms in the gas due to the Pauli exclusion
principle. Through measurements of the thermal relaxation rate we have directly
observed this Pauli blocking as a factor of two reduction in the effective
collision cross-section in the quantum degenerate regime.Comment: 11 pages, 4 figure
Collective Modes in a Dilute Bose-Fermi Mixture
We here study the collective excitations of a dilute spin-polarized
Bose-Fermi mixture at zero temperature, considering in particular the features
arising from the interaction between the two species. We show that a
propagating zero-sound mode is possible for the fermions even when they do not
interact among themselves.Comment: latex, 6 eps figure
Transition from Collisionless to Hydrodynamic Behaviour in an Ultracold Atomic Gas
Relative motion in a two-component, trapped atomic gas provides a sensitive
probe of interactions. By studying the lowest frequency excitations of a two
spin-state gas confined in a magnetic trap, we have explored the transition
from the collisionless to the hydrodynamic regime. As a function of collision
rate, we observe frequency shifts as large as 6% as well as a dramatic,
non-monotonic dependence of the damping rate. The measurements agree
qualitatively with expectations for behavior in the collisionless and
hydrodynamic limits and are quantitatively compared to a classical kinetic
model.Comment: 5 pages, 4 figure
Enhancement and suppression of spontaneous emission and light scattering by quantum degeneracy
Quantum degeneracy modifies light scattering and spontaneous emission. For
fermions, Pauli blocking leads to a suppression of both processes. In contrast,
in a weakly interacting Bose-Einstein condensate, we find spontaneous emission
to be enhanced, while light scattering is suppressed. This difference is
attributed to many-body effects and quantum interference in a Bose-Einstein
condensate.Comment: 4 pages 1 figur
Low energy collective excitations in a superfluid trapped Fermi gas
We study low energy collective excitations in a trapped superfluid Fermi gas,
that describe slow variations of the phase of the superfluid order parameter.
Well below the critical temperature the corresponding eigenfrequencies turn out
to be of the order of the trap frequency, and these modes manifest themselves
as the eigenmodes of the density fluctuations of the gas sample. The latter
could provide an experimental evidence of the presence of the superfluid phase.Comment: 5 pages, REVTeX, referencies correcte
Experimental demonstration of a technique to generate arbitrary quantum superposition states
Using a single, harmonically trapped Be ion, we experimentally
demonstrate a technique for generation of arbitrary states of a two-level
particle confined by a harmonic potential. Rather than engineering a single
Hamiltonian that evolves the system to a desired final sate, we implement a
technique that applies a sequence of simple operations to synthesize the state
Two-species magneto-optical trap with 40K and 87Rb
We trap and cool a gas composed of 40K and 87Rb, using a two-species
magneto-optical trap (MOT). This trap represents the first step towards cooling
the Bose-Fermi mixture to quantum degeneracy. Laser light for the MOT is
derived from laser diodes and amplified with a single high power semiconductor
amplifier chip. The four-color laser system is described, and the
single-species and two-species MOTs are characterized. Atom numbers of 1x10^7
40K and 2x10^9 87Rb are trapped in the two-species MOT. Observation of trap
loss due to collisions between species is presented and future prospects for
the experiment are discussed.Comment: 4 pages, 4 figures; accepted for publication in Physical Review
- …