99 research outputs found
Acute flaccid myelitis:cause, diagnosis, and management
Acute flaccid myelitis (AFM) is a disabling, polio-like illness mainly affecting children. Outbreaks of MM have occurred across multiple global regions since 2012, and the disease appears to be caused by non-polio enterovirus infection, posing a major public health challenge. The clinical presentation of flaccid and often profound muscle weakness (which can invoke respiratory failure and other critical complications) can mimic several other acute neurological illnesses. There is no single sensitive and specific test for MM, and the diagnosis relies on identification of several important clinical, neuroimaging, and cerebrospinal fluid characteristics. Following the acute phase of AFM, patients typically have substantial residual disability and unique long-term rehabilitation needs. In this Review we describe the epidemiology, clinical features, course, and outcomes of AFM to help to guide diagnosis, management, and rehabilitation. Future research directions include further studies evaluating host and pathogen factors, including investigations into genetic, viral, and immunological features of affected patients, host-virus interactions, and investigations of targeted therapeutic approaches to improve the long-term outcomes in this population
Infliximab versus second intravenous immunoglobulin for treatment of resistant Kawasaki disease in the USA (KIDCARE): a randomised, multicentre comparative effectiveness trial
Background
Although intravenous immunoglobulin (IVIG) is effective therapy for Kawasaki disease, 10–20% of patients have recrudescent fever as a sign of persistent inflammation and require additional treatment. We aimed to compare infliximab with a second infusion of IVIG for treatment of resistant Kawasaki disease.
Methods
In this multicentre comparative effectiveness trial, patients (aged 4 weeks to 17 years) with IVIG resistant Kawasaki disease and fever at least 36 h after completion of their first IVIG infusion were recruited from 30 hospitals across the USA. Patients were randomly assigned (1:1) to second IVIG (2 g/kg over 8–12 h) or intravenous infliximab (10 mg/kg over 2 h without premedication), by using a randomly permuted block randomisation design with block size of two or four. Patients with fever 24 h to 7 days following completion of first study treatment crossed over to receive the other study treatment. The primary outcome measure was resolution of fever at 24 h after initiation of study treatment with no recurrence of fever attributed to Kawasaki disease within 7 days post-discharge. Secondary outcome measures included duration of fever from enrolment, duration of hospitalisation after randomisation, and changes in markers of inflammation and coronary artery Z score. Efficacy was analysed in participants who received treatment and had available outcome values. Safety was analysed in all randomised patients who did not withdraw consent. This clinical trial is registered with ClinicalTrials.gov, NCT03065244.
Findings
Between March 1, 2017, and Aug 31, 2020, 105 patients were randomly assigned to treatment and 103 were included in the intention-to-treat population (54 in the infliximab group, 49 in the second IVIG group). Two patients randomised to infliximab did not receive allocated treatment. The primary outcome was met by 40 (77%) of 52 patients in the infliximab group and 25 (51%) of 49 patients in the second IVIG infusion group (odds ratio 0·31, 95% CI 0·13–0·73, p=0·0076). 31 patients with fever beyond 24 h received crossover treatment: nine (17%) in the infliximab group received second IVIG and 22 (45%) in second IVIG group received infliximab (p=0·0024). Three patients randomly assigned to infliximab and two to second IVIG with fever beyond 24h did not receive crossover treatment. Mean fever days from enrolment was 1·5 (SD 1·4) for the infliximab group and 2·5 (2·5) for the second IVIG group (p=0·014). Mean hospital stay was 3·2 days (2·1) for the infliximab group and 4·5 days (2·5) for the second IVIG group (p<0·001). There was no difference between treatment groups for markers of inflammation or coronary artery outcome. 24 (44%) of 54 patients in the infliximab group and 33 (67%) of 49 in the second IVIG group had at least one adverse event. A drop in haemoglobin concentration of at least 2g/dL was seen in 19 (33%) of 58 patients who received IVIG as either their first or second study treatment (three of whom required transfusion) and in three (7%) of 43 who received only infliximab (none required transfusion; p=0·0028). Haemolytic anaemia was the only serious adverse events deemed definitely or probably related to study treatment, and was reported in nine (15%) of 58 patients who received IVIG as either their first or second study treatment and none who received infliximab only.
Interpretation
Infliximab is a safe, well tolerated, and effective treatment for patients with IVIG resistant Kawasaki disease, and results in shorter duration of fever, reduced need for additional therapy, less severe anaemia, and shorter hospitalisation compared with second IVIG infusion
Molecular Methods for Diagnosis of Viral Encephalitis
Hundreds of viruses cause central nervous system (CNS) disease, including meningoencephalitis and postinfectious encephalomyelitis, in humans. The cerebrospinal fluid (CSF) is abnormal in >90% of cases; however, routine CSF studies only rarely lead to identification of a specific etiologic agent. Diagnosis of viral infections of the CNS has been revolutionized by the advent of new molecular diagnostic technologies to amplify viral nucleic acid from CSF, including PCR, nucleic acid sequence-based amplification, and branched-DNA assay. PCR is ideally suited for identifying fastidious organisms that may be difficult or impossible to culture and has been widely applied for detection of both DNA and RNA viruses in CSF. The technique can be performed rapidly and inexpensively and has become an integral component of diagnostic medical practice in the United States and other developed countries. In addition to its use for identification of etiologic agents of CNS disease in the clinical setting, PCR has also been used to quantitate viral load and monitor duration and adequacy of antiviral drug therapy. PCR has also been applied in the research setting to help discriminate active versus postinfectious immune-mediate disease, identify determinants of drug resistance, and investigate the etiology of neurologic disease of uncertain cause. This review discusses general principles of PCR and reverse transcription-PCR, including qualitative, quantitative, and multiplex techniques, with comment on issues of sensitivity, specificity, and positive and negative predictive values. The application of molecular diagnostic methods for diagnosis of specific infectious entities is reviewed in detail, including viruses for which PCR is of proven efficacy and is widely available, viruses for which PCR is less widely available or for which PCR has unproven sensitivity and specificity, and nonviral entities which can mimic viral CNS disease
- …