385 research outputs found

    Topological Photonics

    Get PDF
    Topology is revolutionizing photonics, bringing with it new theoretical discoveries and a wealth of potential applications. This field was inspired by the discovery of topological insulators, in which interfacial electrons transport without dissipation even in the presence of impurities. Similarly, new optical mirrors of different wave-vector space topologies have been constructed to support new states of light propagating at their interfaces. These novel waveguides allow light to flow around large imperfections without back-reflection. The present review explains the underlying principles and highlights the major findings in photonic crystals, coupled resonators, metamaterials and quasicrystals.Comment: progress and review of an emerging field, 12 pages, 6 figures and 1 tabl

    A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay

    Full text link
    We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×\times105^5 GWth_{\rm th}-ton-days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241^{241}Am-13^{13}C radioactive calibration sources reduced the background by a factor of two for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin⁥22Ξ13\sin^{2}2\theta_{13} and ∣Δmee2∣|\Delta m^2_{ee}| were halved as a result of these improvements. Analysis of the relative antineutrino rates and energy spectra between detectors gave sin⁥22Ξ13=0.084±0.005\sin^{2}2\theta_{13} = 0.084\pm0.005 and ∣Δmee2∣=(2.42±0.11)×10−3|\Delta m^{2}_{ee}|= (2.42\pm0.11) \times 10^{-3} eV2^2 in the three-neutrino framework.Comment: Updated to match final published versio

    New measurement of Ξ13\theta_{13} via neutron capture on hydrogen at Daya Bay

    Full text link
    This article reports an improved independent measurement of neutrino mixing angle Ξ13\theta_{13} at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse ÎČ\beta-decays with the emitted neutron captured by hydrogen, yielding a data-set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detectors installed, this study used 621 days of data including the previously reported 217-day data set with six detectors. The dominant statistical uncertainty was reduced by 49%. Intensive studies of the cosmogenic muon-induced 9^9Li and fast neutron backgrounds and the neutron-capture energy selection efficiency, resulted in a reduction of the systematic uncertainty by 26%. The deficit in the detected number of antineutrinos at the far detectors relative to the expected number based on the near detectors yielded sin⁥22Ξ13=0.071±0.011\sin^22\theta_{13} = 0.071 \pm 0.011 in the three-neutrino-oscillation framework. The combination of this result with the gadolinium-capture result is also reported.Comment: 26 pages, 23 figure

    Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    Full text link
    A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9~GWth_{\mathrm{th}} nuclear reactors and detected by eight antineutrino detectors deployed in two near (560~m and 600~m flux-weighted baselines) and one far (1640~m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.0200.946\pm0.020 (0.992±0.0210.992\pm0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9~σ\sigma deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6~MeV was found in the measured spectrum, with a local significance of 4.4~σ\sigma. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.Comment: version published in Chinese Physics
    • 

    corecore