25,802 research outputs found
Wearable wireless tactile display for virtual interactions with soft bodies.
We describe here a wearable, wireless, compact, and lightweight tactile display, able to mechanically stimulate the fingertip of users, so as to simulate contact with soft bodies in virtual environments. The device was based on dielectric elastomer actuators, as high-performance electromechanically active polymers. The actuator was arranged at the user's fingertip, integrated within a plastic case, which also hosted a compact high-voltage circuitry. A custom-made wireless control unit was arranged on the forearm and connected to the display via low-voltage leads. We present the structure of the device and a characterization of it, in terms of electromechanical response and stress relaxation. Furthermore, we present results of a psychophysical test aimed at assessing the ability of the system to generate different levels of force that can be perceived by users.The authors gratefully acknowledge financial support from COST – European Cooperation in Science and Technology, within the framework of “ESNAM – European Scientific Network for Artificial Muscles” (COST Action MP1003). Gabriele Frediani also acknowledges support from the European Commission, within the framework of the project “CEEDS: The Collective Experience of Empathic Data Systems” (FP7-ICT-2009.8.4, Grant 258749) and “Fondazione Cassa di Risparmio di Pisa,” within the framework of the project “POLOPTEL” (Grant 167/09
Elastic Form Factors of He up to Large
Elastic electron scattering off He and He has recently been studied
at forward and backward scattering angles in Hall A at JLab. The results will
provide accurate data on the elastic form factors, charge and magnetic for
He and charge only for He, up to squared momentum transfer -values
of 3.2 GeV.Comment: 3 pages, Proceedings of EFB2
Intrinsic electric field effects on few-particle interactions in coupled GaN quantum dots
We study the multi-exciton optical spectrum of vertically coupled GaN/AlN
quantum dots with a realistic three-dimensional direct-diagonalization approach
for the description of few-particle Coulomb-correlated states. We present a
detailed analysis of the fundamental properties of few-particle/exciton
interactions peculiar of nitride materials. The giant intrinsic electric fields
and the high electron/hole effective masses give rise to different effects
compared to GaAs-based quantum dots: intrinsic exciton-exciton coupling,
non-molecular character of coupled dot exciton wavefunction, strong dependence
of the oscillator strength on the dot height, large ground state energy shift
for dots separated by different barriers. Some of these effects make GaN/AlN
quantum dots interesting candidates in quantum information processing.Comment: 23 pages, 8 figures, 1 tabl
The host galaxies of long-duration GRBs in a cosmological hierarchical scenario
We developed a Monte Carlo code to generate long-duration gamma ray burst
(LGRB) events within cosmological hydrodynamical simulations consistent with
the concordance model. As structure is assembled, LGRBs are generated in the
substructure that formed galaxies today. We adopted the collapsar model so that
LGRBs are produced by single, massive stars at the final stage of their
evolution. We found that the observed properties of the LGRB host galaxies
(HGs) are reproduced if LGRBs are also required to be generated by low
metallicity stars. The low metallicity condition imposed on the progenitor
stars of LGRBs selects a sample of HGs with mean gas abundances of 12 + log O/H
\~ 8.6. For z<1 the simulated HGs of low metallicity LGRB progenitors tend to
be faint, slow rotators with high star formation efficiency, compared with the
general galaxy population, in agreement with observations. At higher redshift,
our results suggest that larger systems with high star formation activity could
also contribute to the generation of LGRBs from low metallicity progenitors
since the fraction of low metallicity gas available for star formation
increases for all systems with look-back time. Under the hypothesis of our LGRB
model, our results support the claim that LGRBs could be unbiased tracers of
star formation at high redshifts.Comment: Final revised version with minor changes. 9 pages, 9 figures,
mn2e.cls. To appear in MNRA
Strong coupling expansion of chiral models
A general precedure is outlined for an algorithmic implementation of the
strong coupling expansion of lattice chiral models on arbitrary lattices. A
symbolic character expansion in terms of connected values of group integrals on
skeleton diagrams may be obtained by a fully computerized approach.Comment: 2 pages, PostScript file, contribution to conference LATTICE '9
Dermoscopy and methyl aminolevulinate: A study for detection and evaluation of field cancerization
Actinic keratosis (AK) is a keratinocyte intraepidermal neoplasia UV light
–
induced that frequently appears in
sun-exposed areas of the skin. Although historically AK was de
fi
ned as
“
precancerous
”
, actually it is considered
as the earliest stage of squamous cell carcinoma (SCC) in situ. Since AKs can progress into invasive SCC, their
treatment isrecommended. AKsrarely developasa singlelesion;usually multiplelesions commonly affect anen-
tire area of chronically actinic damaged skin. This has led to the concept of
“
fi
eld cancerization
”
, an area chroni-
cally sun-exposed that surrounds peripherally visible lesions, in which are individualized subclinical alterations.
One of the main principles endpoint in the management of AKs is the evaluation and the treatment of
fi
eld
cancerization. In this view, in order to detect and quantify
fi
eld cancerization, we employed a method based
on the topical application of methyl aminolevulinate (MAL) and the detection of the
fl
uorescence emitted by
its metabolite Protoporphyrin IX (PpIX); then, considering the extension and the intensity of measured
fl
uores-
cence, we create a score of
fi
eld cancerization. The results show that patients underwent to daylight PDT had a
reduction of total score, from T0 to T2. Whereas in the group untreated we observed a stability of total score or
a slightly worse. So, the method and the score used allows to evaluate with a good approximation the dimension
of
fi
eld cancerization and show the modi
fi
cation of it after treatment
Viscoelastic material behaviour of PBT-GF30 under thermo-mechanical cyclic loading
Abstract This paper deals with the simulation of the behaviour of a short glass fibre reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. Thermo-mechanical fatigue (TMF) tests, consisting of thermal cycling with a superimposed constant strain, have been carried out in the temperature ranges of -40 °C to 120 °C and -40 °C to 40 °C, applying different mean strain values. The main goal of the work is to model the stress trend during TMF cycles and assess the performance of a linear viscoelastic material model. A linear viscoelastic model has been implemented in ABAQUS 6.9-1 by means of Prony series, using the UTRS subroutine to model the time-temperature shift. The stress-time trend during TMF tests is discussed, comparing the simulated versus the experimental stress results. In particular, the maximum and minimum values within each cycle are considered, in order to evaluate the performance of the material model. Linear viscoelastic simulations show good agreement between experimental tests and FE analysis, both for plain and notched specimen
Low delta-V near-Earth asteroids: A survey of suitable targets for space missions
In the last decades Near-Earth Objects (NEOs) have become very important
targets to study, since they can give us clues to the formation, evolution and
composition of the Solar System. In addition, they may represent either a
threat to humankind, or a repository of extraterrestrial resources for suitable
space-borne missions. Within this framework, the choice of next-generation
mission targets and the characterisation of a potential threat to our planet
deserve special attention. To date, only a small part of the 11,000 discovered
NEOs have been physically characterised. From ground and space-based
observations one can determine some basic physical properties of these objects
using visible and infrared spectroscopy. We present data for 13 objects
observed with different telescopes around the world (NASA-IRTF, ESO-NTT, TNG)
in the 0.4 - 2.5 um spectral range, within the NEOSURFACE survey
(http://www.oa-roma.inaf.it/planet/NEOSurface.html). Objects are chosen from
among the more accessible for a rendez-vous mission. All of them are
characterised by a delta-V (the change in velocity needed for transferring a
spacecraft from low-Earth orbit to rendez-vous with NEOs) lower than 10.5 km/s,
well below the Solar System escape velocity (12.3 km/s). We taxonomically
classify 9 of these objects for the first time. 11 objects belong to the
S-complex taxonomy; the other 2 belong to the C-complex. We constrain the
surface composition of these objects by comparing their spectra with meteorites
from the RELAB database. We also compute olivine and pyroxene mineralogy for
asteroids with a clear evidence of pyroxene bands. Mineralogy confirms the
similarity with the already found H, L or LL ordinary chondrite analogues.Comment: 9 pages, 7 figures, to be published in A&A Minor changes by language
edito
Soft Concurrent Constraint Programming
Soft constraints extend classical constraints to represent multiple
consistency levels, and thus provide a way to express preferences, fuzziness,
and uncertainty. While there are many soft constraint solving formalisms, even
distributed ones, by now there seems to be no concurrent programming framework
where soft constraints can be handled. In this paper we show how the classical
concurrent constraint (cc) programming framework can work with soft
constraints, and we also propose an extension of cc languages which can use
soft constraints to prune and direct the search for a solution. We believe that
this new programming paradigm, called soft cc (scc), can be also very useful in
many web-related scenarios. In fact, the language level allows web agents to
express their interaction and negotiation protocols, and also to post their
requests in terms of preferences, and the underlying soft constraint solver can
find an agreement among the agents even if their requests are incompatible.Comment: 25 pages, 4 figures, submitted to the ACM Transactions on
Computational Logic (TOCL), zipped file
- …