23 research outputs found

    Quantum Computer Emulator

    Get PDF
    We describe a quantum computer emulator for a generic, general purpose quantum computer. This emulator consists of a simulator of the physical realization of the quantum computer and a graphical user interface to program and control the simulator. We illustrate the use of the quantum computer emulator through various implementations of the Deutsch-Jozsa and Grover's database search algorithm.Comment: 28 pages, 4, figures, see also http://rugth30.phys.rug.nl/compphys/qce.htm ; figures updated, instructions change

    Event-based computer simulation model of Aspect-type experiments strictly satisfying Einstein's locality conditions

    Get PDF
    Inspired by Einstein-Podolsky-Rosen-Bohm experiments with photons, we construct an event-based simulation model in which every essential element in the ideal experiment has a counterpart. The model satisfies Einstein's criteria of local causality and does not rely on concepts of quantum and probability theory. We consider experiments in which the averages correspond to those of a singlet and product state of a system of two S=1/2S=1/2 particles. The data is analyzed according to the experimental procedure, employing a time window to identify pairs. We study how the time window and the passage time of the photons, which depends on the relative angle between their polarization and the polarizer's direction, influences the correlations, demonstrating that the properties of the optical elements in the observation stations affect the correlations although the stations are separated spatially and temporarily. We show that the model can reproduce results which are considered to be intrinsically quantum mechanical

    Mapping Graphs on the Sphere to the Finite Plane

    Get PDF

    A simulator for quantum computer hardware

    Get PDF
    We present new examples of the use of the quantum computer (QC) emulator. For educational purposes we describe the implementation of the CNOT and Toffoli gate, two basic building blocks of a QC, on a three qubit NMR-like QC.

    Mapping Graphs on the Sphere to the Finite Plane

    Get PDF
    A method is introduced to map a graph on the sphere to the finite plane. The method works by first mapping the graph on the sphere to a tetrahedron. Then the graph on the tetrahedron is mapped to the plane. Using this mapping, arc intersection on the sphere, overlaying subdivisions on the sphere and point location on the sphere may be done by using algorithms in the plane.
    corecore