18 research outputs found

    Magnetic Reconnection, Cosmic Ray Acceleration, and Gamma-Ray emission around Black Holes and Relativistic Jets

    Full text link
    Particle acceleration by magnetic reconnection is now recognized as an important process in magnetically dominated regions of galactic and extragalactic black hole sources. This process helps to solve current puzzles specially related to the origin of the very high energy flare emission in these sources. In this review, we discuss this acceleration mechanism and show recent analytical studies and multidimensional numerical SRMHD and GRMHD (special and general relativistic magnetohydrodynamical) simulations with the injection of test particles, which help us to understand this process both in relativistic jets and coronal regions of these sources. The very high energy and neutrino emission resulting from the accelerated particles by reconnection is also discussed.Comment: Invited Review at the International Conference on Black Holes as Cosmic Batteries: UHECRs and Multimessenger Astronomy - BHCB2018, 12-15 September, 2018, Foz du Iguazu, Brasil, in press in Procs. of Science. arXiv admin note: text overlap with arXiv:1608.0317

    Very-high-energy emission from magnetic reconnection in the radiative-inefficient accretion flow of SgrA*

    No full text
    The cosmic-ray (CR) accelerator at the Galactic center (GC) is not yet established by current observations. Here we investigate the radiative-inefficient accretion flow (RIAF) of Sagittarius A∗; (SgrA∗;) as a CR accelerator assuming acceleration by turbulent magnetic reconnection, and derive possible emission fluxes of CRs interacting within the RIAF (the central ∼1013 cm). The target environment of the RIAF is modeled with numerical, general relativistic magnetohydrodynamics together with leptonic radiative transfer simulations. The acceleration of the CRs is not computed here. Instead, we inject CRs constrained by the magnetic reconnection power of the accretion flow and compute the emission/absorption of γ-rays due to these CRs interacting with the RIAF, through Monte Carlo simulations employing the CRPropa 3 code. The resulting very-high-energy (VHE) fluxes are not expected to reproduce the point source HESS J1745-290 as the emission of this source is most likely produced at parsec scales. The emission profiles derived here intend to trace the VHE signatures of the RIAF as a CR accelerator and provide predictions for observations of the GC with improved angular resolution and differential flux sensitivity as those of the forthcoming Cerenkov Telescope Array (CTA). Within the scenario presented here, we find that for mass accretion rates 10-7 M oyr-1, the RIAF of SgrA∗; produces VHE fluxes that are consistent with the High Energy Stereoscopic System (H.E.S.S.) upper limits for the GC and potentially observable by the future CTA. The associated neutrino fluxes are negligible compared with the diffuse neutrino emission measured by the IceCube

    The impact of plasma instabilities on the spectra of TeV blazars

    No full text
    Relativistic jets from blazars are known to be sources of very high energy gamma rays (VHEGRs). During their propagation in the intergalactic space, VHEGRs interact with pervasive cosmological photon fields such as the extragalactic background light (EBL) and the cosmic microwave background (CMB), producing electron–positron pairs. These pairs can upscatter CMB/EBL photons to high energies via inverse Compton (IC) scattering, thereby continuing the cascade process. This is often used to set limits on intergalactic magnetic fields (IGMFs). However, the picture may change if plasma instabilities, arising due to the interaction of the pairs with the intergalactic medium (IGM), cool down the electrons/positrons faster than inverse Compton scattering. As a consequence, the kinetic energy lost by the pairs to the IGM could cause a hardening in the observed gamma-ray spectrum at energies below ∼100 GeV. Here, we study several types and models of instabilities and assess their impact for interpreting observations of distant blazars. Our results suggest that plasma instabilities can describe the spectra of some blazars and mimic the effects of IGMFs, depending on parameters such as intrinsic spectrum of the object, the density and temperature of the IGM, and the luminosity of the beam. On the other hand, we find that for our fiducial set of parameters plasma instabilities do not have a major impact on the spectra of some of the blazars studied. Therefore, they may be used for constraining IGMFs

    Neutrino and γ-ray emission from the core of NGC1275 by magnetic reconnection: GRMHD simulations and radiative transfer/particle calculations

    No full text
    Very high energy (VHE) emission has been detected from the radio galaxy NGC1275, establishing it as a potential cosmic-ray (CR) accelerator and a high energy neutrino source. We here study neutrino and γ-ray emission from the core of NGC1275 simulating the interactions of CRs assumed to be accelerated by magnetic reconnection, with the accreting plasma environment. To do this, we combine (i) numerical general relativistic (GR) magneto-hydrodynamics (MHD), (ii) Monte Carlo GR leptonic radiative transfer and, (iii) Monte Carlo interaction of CRs. A leptonic emission model that reproduces the SED in the [103-1010.5] eV energy range is used as the background target for photo-pion interactions+electromagnetic cascading. CRs injected with the power-law index κ=1.3 produce an emission profile that matches the VHE tail of NGC1275. The associated neutrino flux, below the IceCube limits, peaks at ∼PeV energies. However, coming from a single source, this neutrino flux may be an over-estimation

    Numerical models of neutrino and gamma-ray emission from magnetic reconnection in the core of radio-galaxies

    No full text
    Non-blazar radio-galaxies emitting in the very-high-energy (VHE; >100 GeV) regime offer a unique perspective for probing particle acceleration and emission processes in black hole (BH) accretion-jet systems. The misaligned nature of these sources indicates the presence of an emission component that could be of hadronic origin and located in the core region. Here we consider turbulent magnetic reconnection in the BH accretion flow of radio-galaxies as a potential mechanism for cosmic-ray (CR) acceleration and VHE emission. To investigate if this scenario is able to account for the observed VHE data, we combine three numerical techniques to self-consistently model the accretion flow environment and the propagation of CRs plus electromagnetic cascades within the accretion flow zone. Here we apply our approach to the radio-galaxy Centaurus A and find that injection of CRs consistent with magnetic reconnection power partially reproduce the VHE data, provided that the accretion flow makes no substantial contribution to the radio-GeV components. The associated neutrino emission peaks at ∼ 1016 eV and is two orders of magnitude below the minimum IceCube flux

    Structure of Radiatively Cooled Jets

    No full text

    Magnetic reconnection, cosmic ray acceleration and gamma-ray emission around black holes and relativistic jets

    No full text
    Particle acceleration by magnetic reconnection is now recognized as an important process in magnetically dominated regions of galactic and extragalactic black hole sources. This process helps to solve current puzzles specially related to the origin of the very high energy flare emission in these sources. In this review, we discuss this acceleration mechanism and show recent analytical studies and multidimensional numerical SRMHD and GRMHD (special and general relativistic magnetohydrodynamical) simulations with the injection of test particles, which help us to understand this process both in relativistic jets and coronal regions of these sources. The very high energy and neutrino emission resulting from the accelerated particles by reconnection is also discussed
    corecore