37 research outputs found
Review Article MR technology for biological studies in mice
ABSTRACT: Mouse models are crucial for the study of genetic factors and processes that influence human disease. In addition to tools for measuring genetic expression and establishing genotype, tools to accurately and comparatively assess mouse phenotype are essential in order to characterize pathology and make comparisons with human disease. MRI provides a powerful means of evaluating various anatomical and functional changes and hence is growing in popularity as a phenotypic readout for biomedical research studies. To accommodate the large numbers of mice needed in most biological studies, mouse MRI must offer high-throughput image acquisition and efficient image analysis. This article reviews the technology of multiple-mouse MRI, a method that images multiple mice or specimens simultaneously as a means of enabling high-throughput studies. Aspects of image acquisition and computational analysis in multiple-mouse studies are also described
Pre-clinical imaging of transgenic mouse models of neuroblastoma using a dedicated 3-element solenoid coil on a clinical 3T platform.
Background The use of clinical MRI scanners to conduct pre-clinical research facilitates comparisons with clinical studies. Here the utility and sensitivity of anatomical and functional MRI data/biomarkers acquired from transgenic mouse models of neuroblastoma using a dedicated radiofrequency (RF) coil on a clinical 3T scanner was evaluated.Methods Multiparametric MRI of transgenic mice bearing abdominal neuroblastomas was performed at 3T, and data cross-referenced to that acquired from the same mice on a pre-clinical 7T MRI system. T2-weighted imaging, quantitation of the native longitudinal relaxation time (T1) and the transverse relaxation rate (R2*), and dynamic contrast-enhanced (DCE)-MRI, was used to assess tumour volume, phenotype and response to cyclophosphamide or cabozantinib.Results Excellent T2-weighted image contrast enabled clear tumour delineation at 3T. Significant correlations of tumour volume (R=0.98, P2* (R=0.87, P2* (Ptrans for each tumour (median Ktrans values of 0.202, 0.168 and 0.114 min-1). Cyclophosphamide elicited a significant reduction in both tumour burden (P1 (P<0.01), whereas cabozantinib induced significant (P<0.01) tumour growth delay.Conclusions Simultaneous multiparametric MRI of multiple tumour-bearing animals using this coil arrangement at 3T can provide high efficiency/throughput for both phenotypic characterisation and evaluation of novel therapeutics, and facilitate the introduction of functional MRI biomarkers into aligned imaging-embedded clinical trials
Mouse MRI shows brain areas relatively larger in males emerge before those larger in females
Sex differences exist in behaviors, disease and neuropsychiatric disorders. Sexual dimorphisms however, have yet to be studied across the whole brain and across a comprehensive time course of postnatal development. Here, we use manganese-enhanced MRI (MEMRI) to longitudinally image male and female C57BL/6J mice across 9 time points, beginning at postnatal day 3. We recapitulate findings on canonically dimorphic areas, demonstrating MEMRI's ability to study neuroanatomical sex differences. We discover, upon whole-brain volume correction, that neuroanatomical regions larger in males develop earlier than those larger in females. Groups of areas with shared sexually dimorphic developmental trajectories reflect behavioral and functional networks, and expression of genes involved with sex processes. Also, post-pubertal neuroanatomy is highly individualized, and individualization occurs earlier in males. Our results demonstrate the ability of MEMRI to reveal comprehensive developmental differences between male and female brains, which will improve our understanding of sex-specific predispositions to various neuropsychiatric disorders
Mouse MRI shows brain areas relatively larger in males emerge before those larger in females
Sex differences exist in behaviors, disease and neuropsychiatric disorders. Sexual dimorphisms however, have yet to be studied across the whole brain and across a comprehensive time course of postnatal development. Here, we use manganese-enhanced MRI (MEMRI) to longitudinally image male and female C57BL/6J mice across 9 time points, beginning at postnatal day 3. We recapitulate findings on canonically dimorphic areas, demonstrating MEMRI's ability to study neuroanatomical sex differences. We discover, upon whole-brain volume correction, that neuroanatomical regions larger in males develop earlier than those larger in females. Groups of areas with shared sexually dimorphic developmental trajectories reflect behavioral and functional networks, and expression of genes involved with sex processes. Also, post-pubertal neuroanatomy is highly individualized, and individualization occurs earlier in males. Our results demonstrate the ability of MEMRI to reveal comprehensive developmental differences between male and female brains, which will improve our understanding of sex-specific predispositions to various neuropsychiatric disorders
Magnetic resonance thermometry of flowing blood
Blood temperature is a key determinant of tissue temperature and can be altered under normal physiological states, such as exercise, in diseases such as stroke or iatrogenically in therapies which modulate tissue temperature, such as therapeutic hypothermia. Currently available methods for the measurement of arterial and venous temperatures are invasive and, for small animal models, are impractical. Here, we present a methodology for the measurement of intravascular and tissue temperature by magnetic resonance imaging (MRI) using the lanthanide agent TmDOTMA- (DOTMA, tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; Tm, thulium). The approach makes use of phase-sensitive imaging measurements, combined with spectrally selective excitation, to monitor the temperature-dependent shift in the resonance of proton nuclei associated with water and with methyl groups of TmDOTMA- . Measurements were first made in a flow phantom modelling diastolic blood flow in the mouse aorta or inferior vena cava (IVC) and imaged using 7-T preclinical MRI with a custom-built surface coil. Flowing and static fluid temperatures agreed to within 0.12°C for these experiments. Proof-of-concept experiments were also performed on three healthy adult mice, demonstrating temperature measurements in the aorta, IVC and kidney following a bolus injection of contrast agent. A small (0.7-1°C), but statistically significant, higher kidney temperature compared with the aorta (p = 0.002-0.007) and IVC (p = 0.003-0.03) was shown in all animals. These findings demonstrate the feasibility of the technique for in vivo applications and illustrate how the technique could be used to explore the relationship between blood and tissue temperature for a wide range of applications.Funding for this work was provided by the Canadian Institutes of Health Research Grant (MOP231389 to J.G.S.)
Altered brain morphology after focal radiation reveals impact of off-target effects: implications for white matter development and neurogenesis
Background:
Children with brain tumors treated with cranial radiation therapy (RT) often exhibit cognitive late effects, commonly associated with reduced white matter (WM) volume and decreased neurogenesis. The impact of radiation damage in particular regions or tissues on brain development as a whole has not been elucidated.
Methods:
We delivered whole-brain or focal radiation (8 Gy single dose) to infant mice. Focal treatments targeted white matter (anterior commissure), neuronal (olfactory bulbs), or neurogenic (subventricular zone) regions. High-resolution ex vivo MRI was used to assess radiation-induced volume differences. Immunohistochemistry for myelin basic protein and doublecortin was performed to assess associated cellular changes within white matter and related to neurogenesis, respectively.
Results:
Both whole-brain and focal RT in infancy resulted in volume deficits in young adulthood, with whole-brain RT resulting in the largest deficits. RT of the anterior commissure, surprisingly, showed no impact on its volume or on brain development as a whole. In contrast, RT of the olfactory bulbs resulted in off-target volume reduction in the anterior commissure and decreased subventricular zone neurogenesis. RT of the subventricular zone likewise produced volume deficits in both the olfactory bulbs and the anterior commissure. Similar off-target effects were found in the corpus callosum and parietal cortex.
Conclusions:
Our results demonstrate that radiation damage locally can have important off-target consequences for brain development. These data suggest that WM may be less radiosensitive than volume change alone would indicate and have implications for region-sparing radiation treatments aimed at reducing cognitive late effects.This work was supported by the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, and the Ontario Institute for Cancer Research through funding provided by the government of Ontario