30,141 research outputs found

    Nearly Mass-Degenerate Majorana Neutrinos: Double Beta Decay and Neutrino Oscillations

    Get PDF
    Assuming equal tree-level Majorana masses for the standard-model neutrinos, either from the canonical seesaw mechanism or from a heavy scalar triplet, I discuss how their radiative splitting may be relevant to neutrinoless double beta decay and neutrino oscillations.Comment: 12 pages, including 4 figures, talk at NANP9

    Cosmic Strings, Zero Modes and SUSY breaking in Nonabelian N=1 Gauge Theories

    Get PDF
    We investigate the microphysics of cosmic strings in Nonabelian gauge theories with N=1 supersymmetry. We give the vortex solutions in a specific example and demonstrate that fermionic superconductivity arises because of the couplings and interactions dictated by supersymmetry. We then use supersymmetry transformations to obtain the relevant fermionic zero modes and investigate the role of soft supersymmetry breaking on the existence and properties of the superconducting strings.Comment: 12 pages, RevTex, submitted to Phys. Rev.

    Environmental memory from a circadian oscillator:the Arabidopsis thaliana clock differentially integrates perception of photic vs. thermal entrainment

    Get PDF
    The constraint of a rotating earth has led to the evolution of a circadian clock that drives anticipation of future environmental changes. During this daily rotation, the circadian clock of Arabidopsis thaliana (Arabidopsis) intersects with the diurnal environment to orchestrate virtually all transcriptional processes of the plant cell, presumably by detecting, interpreting, and anticipating the environmental alternations of light and temperature. To comparatively assess differential inputs toward phenotypic and physiological responses on a circadian parameter, we surveyed clock periodicity in a recombinant inbred population modified to allow for robust periodicity measurements after entrainment to respective photic vs. thermal cues, termed zeitgebers. Lines previously thermally entrained generally displayed reduced period length compared to those previously photically entrained. This differential zeitgeber response was also detected in a set of diverse Arabidopsis accessions. Thus, the zeitgebers of the preceding environment direct future behavior of the circadian oscillator. Allelic variation at quantitative trait loci generated significant differences in zeitgeber responses in the segregating population. These were important for periodicity variation dependent on the nature of the subsequent entrainment source. Collectively, our results provide a genetic paradigm for the basis of environmental memory of a preceding environment, which leads to the integrated coordination of circadian periodicity

    Optimization of Convolutional Neural Network ensemble classifiers by Genetic Algorithms

    Get PDF
    Breast cancer exhibits a high mortality rate and it is the most invasive cancer in women. An analysis from histopathological images could predict this disease. In this way, computational image processing might support this task. In this work a proposal which employes deep learning convolutional neural networks is presented. Then, an ensemble of networks is considered in order to obtain an enhanced recognition performance of the system by the consensus of the networks of the ensemble. Finally, a genetic algorithm is also considered to choose the networks that belong to the ensemble. The proposal has been tested by carrying out several experiments with a set of benchmark images.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The MASSIVE Survey - III. Molecular gas and a broken Tully-Fisher relation in the most massive early-type galaxies

    Get PDF
    In this work we present CO(1-0) and CO(2-1) observations of a pilot sample of 15 early-type galaxies (ETGs) drawn from the MASSIVE galaxy survey, a volume-limited integral-field spectroscopic study of the most massive ETGs (M∗>1011.5M⊙M_* >10^{11.5}M_\odot) within 108 Mpc. These objects were selected because they showed signs of an interstellar medium and/or star formation. A large amount of gas (>>2×\times108^8 M⊙_{\odot}) is present in 10 out of 15 objects, and these galaxies have gas fractions higher than expected based on extrapolation from lower mass samples. We tentatively interpret this as evidence that stellar mass loss and hot halo cooling may be starting to play a role in fuelling the most massive galaxies. These MASSIVE ETGs seem to have lower star-formation efficiencies (SFE=SFR/MH2_{\rm H2}) than spiral galaxies, but the SFEs derived are consistent with being drawn from the same distribution found in other lower mass ETG samples. This suggests that the SFE is not simply a function of stellar mass, but that local, internal processes are more important for regulating star formation. Finally we used the CO line profiles to investigate the high-mass end of the Tully-Fisher relation (TFR). We find that there is a break in the slope of the TFR for ETGs at high masses (consistent with previous studies). The strength of this break correlates with the stellar velocity dispersion of the host galaxies, suggesting it is caused by additional baryonic mass being present in the centre of massive ETGs. We speculate on the root cause of this change and its implications for galaxy formation theories.Comment: 13 pages, 7 figures, accepted by MNRA

    Probabilistic Guarded P Systems, A New Formal Modelling Framework

    Get PDF
    Multienvironment P systems constitute a general, formal framework for modelling the dynamics of population biology, which consists of two main approaches: stochastic and probabilistic. The framework has been successfully used to model biologic systems at both micro (e.g. bacteria colony) and macro (e.g. real ecosystems) levels, respectively. In this paper, we extend the general framework in order to include a new case study related to P. Oleracea species. The extension is made by a new variant within the probabilistic approach, called Probabilistic Guarded P systems (in short, PGP systems). We provide a formal definition, a simulation algorithm to capture the dynamics, and a survey of the associated software.Ministerio de Economía y Competitividad TIN2012- 37434Junta de Andalucía P08-TIC-0420

    A Note about proving non-Γ\Gamma under a finite non-microstates free Fisher information Assumption

    Get PDF
    We prove that if X1,...,Xn(n>1)X_{1},...,X_{n} (n >1) are selfadjoints in a W∗W^{*}-probability space with finite non-microstates free Fisher information, then the von Neumann algebra W∗(X1,...,Xn)W^{*}(X_{1},...,X_{n}) they generate doesn't have property Γ\Gamma (especially is not amenable). This is an analog of a well-known result of Voiculescu for microstates free entropy. We also prove factoriality under finite non-microstates entropy.Comment: 12 pages; New results with similar techniques; cf. abstracts for detail
    • …
    corecore