120 research outputs found
Incremental Clustering: The Case for Extra Clusters
The explosion in the amount of data available for analysis often necessitates
a transition from batch to incremental clustering methods, which process one
element at a time and typically store only a small subset of the data. In this
paper, we initiate the formal analysis of incremental clustering methods
focusing on the types of cluster structure that they are able to detect. We
find that the incremental setting is strictly weaker than the batch model,
proving that a fundamental class of cluster structures that can readily be
detected in the batch setting is impossible to identify using any incremental
method. Furthermore, we show how the limitations of incremental clustering can
be overcome by allowing additional clusters
- …