23 research outputs found

    An inducible Cre mouse line to sparsely target nervous system cells, including Remak Schwann cells

    Get PDF
    Nerves of the peripheral nervous system contain two classes of Schwann cells: myelinating Schwann cells that ensheath large caliber axons and generate the myelin sheath, and Remak Schwann cells that surround smaller axons and do not myelinate. While tools exist for genetic targeting of Schwann cell precursors and myelinating Schwann cells, such reagents have been challenging to generate specifically for the Remak population, in part because many of the genes that mark this population in maturity are also robustly expressed in Schwann cell precursors. To circumvent this challenge, we utilized BAC transgenesis to generate a mouse line expressing a tamoxifen-inducible Cre under the control of a Remak-expressed gene promoter (Egr1). However, as Egr1 is also an activity dependent gene expressed by some neurons, we flanked this Cre by flippase (Flpe) recognition sites, and coinjected a BAC expressing Flpe under control of a pan-neuronal Snap25 promoter to excise the Cre transgene from these neuronal cells. Genotyping and inheritance demonstrate that the two BACs co-integrated into a single locus, facilitating maintenance of the line. Anatomical studies following a cross to a reporter line show sparse tamoxifen-dependent recombination in Remak Schwann cells within the mature sciatic nerve. However, depletion of neuronal Cre activity by Flpe is partial, with some neurons and astrocytes also showing evidence of Cre reporter activity in the central nervous system. Thus, this mouse line will be useful in mosaic loss-of-function studies, lineage tracing studies following injury, live cell imaging studies, or other experiments benefiting from sparse labeling

    Quantitative nucleotide level analysis of regulation of translation in response to depolarization of cultured neural cells

    Get PDF
    Studies on regulation of gene expression have contributed substantially to understanding mechanisms for the long-term activity-dependent alterations in neural connectivity that are thought to mediate learning and memory. Most of these studies, however, have focused on the regulation of mRNA transcription. Here, we utilized high-throughput sequencing coupled with ribosome footprinting to globally characterize the regulation of translation in primary mixed neuronal-glial cultures in response to sustained depolarization. We identified substantial and complex regulation of translation, with many transcripts demonstrating changes in ribosomal occupancy independent of transcriptional changes. We also examined sequence-based mechanisms that might regulate changes in translation in response to depolarization. We found that these are partially mediated by features in the mRNA sequence—notably upstream open reading frames and secondary structure in the 5′ untranslated region—both of which predict downregulation in response to depolarization. Translationally regulated transcripts are also more likely to be targets of FMRP and include genes implicated in autism in humans. Our findings support the idea that control of mRNA translation plays an important role in response to neural activity across the genome

    Activity-dependent translation dynamically alters the proteome of the perisynaptic astrocyte process

    Get PDF
    Within eukaryotic cells, translation is regulated independent of transcription, enabling nuanced, localized, and rapid responses to stimuli. Neurons respond transcriptionally and translationally to synaptic activity. Although transcriptional responses are documented in astrocytes, here we test whether astrocytes have programmed translational responses. We show that seizure activity rapidly changes the transcripts on astrocyte ribosomes, some predicted to be downstream of BDNF signaling. In acute slices, we quantify the extent to which cues of neuronal activity activate translation in astrocytes and show that this translational response requires the presence of neurons, indicating that the response is non-cell autonomous. We also show that this induction of new translation extends into the periphery of astrocytes. Finally, synaptic proteomics show that new translation is required for changes that occur in perisynaptic astrocyte protein composition after fear conditioning. Regulation of translation in astrocytes by neuronal activity suggests an additional mechanism by which astrocytes may dynamically modulate nervous system functioning

    Evaluation of gliovascular functions of AQP4 readthrough isoforms

    Get PDF
    Aquaporin-4 (AQP4) is a water channel protein that links the astrocytic endfeet to the blood-brain barrier (BBB) and regulates water and potassium homeostasis in the brain, as well as the glymphatic clearance of waste products that would otherwise potentiate neurological diseases. Recently, translational readthrough was shown to generate a C-terminally extended variant of AQP4, known as AQP4x, which preferentially localizes around the BBB through interaction with the scaffolding protein α-syntrophin, and loss of AQP4x disrupts waste clearance from the brain. To investigate the function of AQP4x, we generated a novel AQP4 mouse line (AllX) to increase relative levels of the readthrough variant above the ~15% of AQP4 in the brain of wild-type (WT) mice. We validated the line and assessed characteristics that are affected by the presence of AQP4x, including AQP4 and α-syntrophin localization, integrity of the BBB, and neurovascular coupling. We compared All

    Evaluation of gliovascular functions of AQP4 readthrough isoforms

    Get PDF
    Aquaporin-4 (AQP4) is a water channel protein that links the astrocytic endfeet to the blood-brain barrier (BBB) and regulates water and potassium homeostasis in the brain, as well as the glymphatic clearance of waste products that would otherwise potentiate neurological diseases. Recently, translational readthrough was shown to generate a C-terminally extended variant of AQP4, known as AQP4x, which preferentially localizes around the BBB through interaction with the scaffolding protein α-syntrophin, and loss of AQP4x disrupts waste clearance from the brain. To investigate the function of AQP4x, we generated a novel AQP4 mouse line (AllX) to increase relative levels of the readthrough variant above the ~15% of AQP4 in the brain of wild-type (WT) mice. We validated the line and assessed characteristics that are affected by the presence of AQP4x, including AQP4 and α-syntrophin localization, integrity of the BBB, and neurovascular coupling. We compared AllXHom and AllXHet mice to WT and to previously characterized AQP4 NoXHet and NoXHom mice, which cannot produce AQP4x. An increased dose of AQP4x enhanced perivascular localization of α-syntrophin and AQP4, while total protein expression of the two was unchanged. However, at 100% readthrough, AQP4x localization and the formation of higher order complexes were disrupted. Electron microscopy showed that overall blood vessel morphology was unchanged except for an increased proportion of endothelial cells with budding vesicles in NoXHom mice, which may correspond to a leakier BBB or altered efflux that was identified in NoX mice using MRI. These data demonstrate that AQP4x plays a small but measurable role in maintaining BBB integrity as well as recruiting structural and functional support proteins to the blood vessel. This also establishes a new set of genetic tools for quantitatively modulating AQP4x levels

    Isl1 and Pou4f2 form a complex to regulate target genes in developing retinal ganglion cells.

    No full text
    Precise regulation of gene expression during biological processes, including development, is often achieved by combinatorial action of multiple transcription factors. The mechanisms by which these factors collaborate are largely not known. We have shown previously that Isl1, a Lim-Homeodomain transcription factor, and Pou4f2, a class IV POU domain transcription factor, co-regulate a set of genes required for retinal ganglion cell (RGC) differentiation. Here we further explore how these two factors interact to precisely regulate gene expression during RGC development. By GST pulldown assays, co-immunoprecipitation, and electrophoretic mobility shift assays, we show that Isl1 and Pou4f2 form a complex in vitro and in vivo, and identify the domains within these two proteins that are responsible for this interaction. By luciferase assay, in situ hybridization, and RNA-seq, we further demonstrate that the two factors contribute quantitatively to gene expression in the developing RGCs. Although each factor alone can activate gene expression, both factors are required to achieve optimal expression levels. Finally, we discover that Isl1 and Pou4f2 can interact with other POU and Lim-Homeodomain factors respectively, indicating the interactions between these two classes of transcription factors are prevalent in development and other biological processes

    Original Article Methicillin resistant Staphylococcus aureus: prevalence and antibiogram in a tertiary care hospital in western Nepal

    No full text
    Background: Methicillin resistant Staphylococcus aureus (MRSA) is a major cause of nosocomial and community infections. Its prevalence varies with country and with hospitals within a country. The current study estimates the prevalence of MRSA strains and investigates their antibiogram in western Nepal. Methodology: A total of 162 S. aureus strains were isolated from various clinical specimens, and antibiotic susceptibility tests were performed using disc diffusion, growth on oxacillin screen agar, and oxacillin minimum inhibitory concentration (MIC). Results: One hundred and twelve (69.1%) strains were found to be MRSA, of which 37 (33.1%) were community acquired and 75 (66.9%) were hospital acquired. Of 112 MRSA strains, 45 (40.1%) were multi-drug resistant. All MRSA strains were found resistant to penicillin, and 91.9%, 87.4%, 77%, and 55.5 % were resistant to amoxicillin, ampicillin, trimethoprim/sulfamethoxazole, and cephalexin, respectively. However, low resistance was observed with amikacin (19%), ciprofloxacin (26.5%), and norfloxacin (30.6%). All strains were sensitive to vancomycin. Conclusion: The reported rate of MRSA prevalence is alarming. Given the ability of MRSA to spread from person to person, it is necessary to adhere to rational use of antibiotics and to raise awareness among the concerned communities and tourists who visit this area
    corecore