7 research outputs found
Four decades of phenology in an alpine amphibian: trends, stasis, and climatic drivers
Strong phenological shifts in response to changes in climatic conditions have been reported for many species, including amphibians, which are expected to breed earlier. Phenological shifts in breeding are observed in a wide number of amphibian populations, but less is known about populations living at high elevations, which are predicted to be more sensitive to climate change than lowland populations. The goal of this study is to assess the main factors determining the timing of breeding in an alpine population of the common toad (Bufo bufo) and to describe the observed shifts in its breeding phenology. We modelled the effect of environmental variables on the start and peak dates of the breeding season using 39 years of individual-based data. In addition, we investigated the effect of the lunar cycle, as well as the individual variation in breeding phenology. Finally, to assess the individual heterogeneity in the timing of breeding, we calculated the repeatability of the timing of arrival at the breeding site. Breeding advanced to earlier dates in the first years of the study but the trend continued only until the mid 1990s, and stabilised afterwards. Overall, toads are now breeding on average around 30 days earlier than at the start of the study period. High temperatures and low snow cover in winter and spring, as well as reduced spring precipitation were all associated with earlier breeding. Additionally, we found evidence of males arriving on average before females at the breeding site but no clear and strong effect of the lunar cycle. We only found weak evidence of among-individual variation in shifts in the breeding phenology, as well as a low repeatability of arrival timing. Our findings show that the observed changes in breeding phenology are strongly associated with the environmental conditions. These results contribute to filling a knowledge gap on the effects of climate change on alpine amphibian populations. Moreover, we show that changes in phenology, especially in the mountains, can be hard to predict as local microclimatic conditions do not necessarily reflect the observed global climatic trends
Four decades of phenology in an alpine amphibian: trends, stasis, and climatic drivers
Strong phenological shifts in response to changes in climatic conditions have been reported for many species, including amphibians, which are expected to breed earlier. Phenological shifts in breeding are observed in a wide number of amphibian populations, but less is known about populations living at high elevations, which are predicted to be more sensitive to climate change than lowland populations. The goal of this study is to assess the main factors determining the timing of breeding in an alpine population of the common toad (Bufo bufo) and to describe the observed shifts in its breeding phenology. We modelled the effect of environmental variables on the start and peak dates of the breeding season using 39 years of individual-based data. In addition, we investigated the effect of the lunar cycle, as well as the individual variation in breeding phenology. Finally, to assess the individual heterogeneity in the timing of breeding, we calculated the repeatability of the timing of arrival at the breeding site. Breeding advanced to earlier dates in the first years of the study but the trend continued only until the mid 1990s, and stabilised afterwards. Overall, toads are now breeding on average around 30 days earlier than at the start of the study period. High temperatures and low snow cover in winter and spring, as well as reduced spring precipitation were all associated with earlier breeding. Additionally, we found evidence of males arriving on average before females at the breeding site but no clear and strong effect of the lunar cycle. We only found weak evidence of among-individual variation in shifts in the breeding phenology, as well as a low repeatability of arrival timing. Our findings show that the observed changes in breeding phenology are strongly associated with the environmental conditions. These results contribute to filling a knowledge gap on the effects of climate change on alpine amphibian populations. Moreover, we show that changes in phenology, especially in the mountains, can be hard to predict as local microclimatic conditions do not necessarily reflect the observed global climatic trends
Vegetational and agricultural dynamics at Burgäschisee (Swiss Plateau) recorded for 18,700 years by multi-proxy evidence from partly varved sediments
Little is known about the timing and the vegetation dynamics shortly after the Last Glacial Maximum (LGM) on the Swiss Plateau 19,000–15,000 cal BP. Subsequent Late Glacial and Holocene vegetation changes are better known; however, it is unclear if the few available palynological and macrofossil records are able to capture the entire vegetation variability of the region. A new palaeoecological multi-proxy study using pollen, spores, charcoal and X-ray fluorescence (XRF) from Burgäschisee (Swiss Plateau, 465 m a.s.l.) is applied to reconstruct vegetation, fire and land use for the past 19,000 cal years. Steppe tundra vegetation established at c. 18,700 cal BP only c. 300 years after the end of the LGM and deglaciation. A shift from steppe tundra (Artemisia, Helianthemum) to shrub tundra (Betula nana, Salix, Juniperus) with sporadic tree Betula stands occurred around 16,000 cal BP, most likely in response to climate warming after the end of Heinrich event 1. Abundant spores of coprophilous fungi (Sporormiella, Cercophora) may reflect the presence of Pleistocene large herbivores (e.g. Mammuthus primigenius, Bison bonasus, Rangifer tarandus). Afforestation started more than 2,000 years later with Juniperus and tree Betula around 14,500 cal BP. Mixed Betula and Pinus sylvestris forests persisted until 10,800 cal BP, when mixed elm forests expanded into the region in response to climate warming. Around 8,200 cal BP, mesophilous Fagus sylvatica and Abies alba partly replaced more heliophilous species in the forests, when climate became less continental and more moist. Pollen of Cerealia, Plantago lanceolata and other crops and weeds suggest that agricultural activities became significant during the Neolithic around 6,500 cal BP (4550 cal BC). Archaeological findings from Neolithic pile dwellings around 5,950 cal BP (4000 cal BC) indicate local settlements around the lake. The lake sediments are laminated for most of the last c. 6,800 years. With two independent proxies (XRF and pollen), we can demonstrate that these laminations are annual, suggesting short-term mixing of the lake water due to a more open landscape in response to land use. Our study shows that the annually laminated (varved) sediments from Burgäschisee have a great potential for high-resolution multi-proxy analyses covering the past c. 6,800 years. They can provide accurate ages of cultural phases that might be compared with dendrochronologically dated evidence from lake dwellings