18 research outputs found
Simulation of Many-Body Fermi Systems on a Universal Quantum Computer
We provide fast algorithms for simulating many body Fermi systems on a
universal quantum computer. Both first and second quantized descriptions are
considered, and the relative computational complexities are determined in each
case. In order to accommodate fermions using a first quantized Hamiltonian, an
efficient quantum algorithm for anti-symmetrization is given. Finally, a
simulation of the Hubbard model is discussed in detail.Comment: Submitted 11/7/96 to Phys. Rev. Lett. 10 pages, 0 figure
Decoherence-Free Subspaces for Multiple-Qubit Errors: (II) Universal, Fault-Tolerant Quantum Computation
Decoherence-free subspaces (DFSs) shield quantum information from errors
induced by the interaction with an uncontrollable environment. Here we study a
model of correlated errors forming an Abelian subgroup (stabilizer) of the
Pauli group (the group of tensor products of Pauli matrices). Unlike previous
studies of DFSs, this type of errors does not involve any spatial symmetry
assumptions on the system-environment interaction. We solve the problem of
universal, fault-tolerant quantum computation on the associated class of DFSs.Comment: 22 pages, 4 figures. Sequel to quant-ph/990806
Simulating Ising Spin Glasses on a Quantum Computer
A linear-time algorithm is presented for the construction of the Gibbs
distribution of configurations in the Ising model, on a quantum computer. The
algorithm is designed so that each run provides one configuration with a
quantum probability equal to the corresponding thermodynamic weight. The
partition function is thus approximated efficiently. The algorithm neither
suffers from critical slowing down, nor gets stuck in local minima. The
algorithm can be A linear-time algorithm is presented for the construction of
the Gibbs distribution of configurations in the Ising model, on a quantum
computer. The algorithm is designed so that each run provides one configuration
with a quantum probability equal to the corresponding thermodynamic weight. The
partition function is thus approximated efficiently. The algorithm neither
suffers from critical slowing down, nor gets stuck in local minima. The
algorithm can be applied in any dimension, to a class of spin-glass Ising
models with a finite portion of frustrated plaquettes, diluted Ising models,
and models with a magnetic field. applied in any dimension, to a class of
spin-glass Ising models with a finite portion of frustrated plaquettes, diluted
Ising models, and models with a magnetic field.Comment: 24 pages, 3 epsf figures, replaced with published and significantly
revised version. More info available at http://www.fh.huji.ac.il/~dani/ and
http://www.fiz.huji.ac.il/staff/acc/faculty/biha
Fully persistent lists WITH CATENATION
This paper considers the problem of represmrtirrg stacks with catenation so that any stack, old or new, is available for access or update operations. Th]s problem arises in the implementation of list-based and functional programming languages. A solution is proposed requiring constant time and space for each stack operation except catenation, which requmes O(log log k) time and space. Here k is the number of stack operations done before th
A Locally Adaptive Data Compression Scheme
A data compression scheme that exploits locality of reference, such as occurs when words are used frequently over short intervals and then fall into long periods of disuse, is described. The scheme is based on a simple heuristic for self-organizing sequential search and on variable-length encodings of integers. We prove that it never performs much worse than Huffman coding and can perform substantially better; experiments on real files show that its performance is usually quite close to that of Huffman coding. Our scheme has many implementation advantages: it is simple, allows fast encoding and decod-ing, and requires only one pass over the data to be compressed (static Huffman coding takes two passes)