78 research outputs found

    Residential neighbourhood greenspace is associated with reduced risk of cardiovascular disease: A prospective cohort study

    Get PDF
    Background: Living in a greener neighbourhood may reduce the risk of developing incident cardiovascular disease, but evidence is limited by reliance on cross-sectional comparisons. We use data from a longitudinal study with a time-independent measure of risk to explore the association between exposure to greenspace and cardiovascular disease. Methods: Data was from the European Prospective Investigation of Cancer Norfolk UK cohort, baseline 1993–1997 (n = 24,420). Neighbourhoods were defined as 800m radius zones around participants’ home, according to their home postcode (zip code) in the year 2000. Greenspace exposure was identified using classified satellite imagery. Adjusted Cox proportional hazards regression examined associations between greenspace and incident cardiovascular disease. Mediation analysis assessed if physical activity mediated associations, whilst modification by rurality, socio-economic status and age was explored. Results: The mean age of participants was 59.2 years at baseline, 54.7% were female, and mean follow-up time was 14.5 years. Individuals living in the greenest neighbourhood quartile had a 7% lower relative hazard of developing cardiovascular disease than other neighbourhoods (HR 0.93; 95% CI 0.88, 0.97; p = 0.003) after adjusting for age, sex, BMI, prevalent diabetes and socio-economic status (SES). Physical activity did not mediate the relationship (greenest compared to the least green quartile HR 0.99; 95% CI 0.97, 1.01; p = 0.416). Models predicted incidence of cardiovascular disease in the least green neighbourhoods (19.4% greenspace on average) would fall by 4.8% (95% CI 1.6%, 8.2% p = 0.003) if they were as green as the average neighbourhood (59.0% greenspace). Occupation moderated the relationship, whereby exposure to greenspace was not associated with incident CVD for participants engaged in manual occupations. Conclusions: Greener home neighbourhoods may protect against risk of cardiovascular disease even after accounting for SES, whilst the mechanism does not appear to be strongly associated with physical activity. Putative causal mechanisms require investigation

    Are GIS-modelled routes a useful proxy for the actual routes followed by commuters?

    Get PDF
    Active commuting offers the potential to increase physical activity among adults by being built into daily routines. Characteristics of the route to work may influence propensity to walk or cycle. Geographic information system (GIS) software is often used to explore this by modelling routes between home and work. However, if the validity of modelled routes depends on the mode of travel used, studies of environmental determinants of travel may be biased. We aimed to understand how well modelled routes reflect those actually taken, and what characteristics explain these differences. We compared modelled GIS shortest path routes with actual routes measured using QStarz BT-Q1000X Global Positioning System (GPS) devices in a free-living sample of adults working in Cambridge and using varying travel modes. Predictors of differences, according to length and percentage overlap, between the two route sets were assessed using multilevel regression models and concordance coefficients. The 276 trips, made by 51 participants, were on average 27% further than modelled routes, with an average geographical overlap of 39%. However, predictability of the route depended on travel mode. For route length, there was moderate-to-substantial agreement for journeys made on foot and by bicycle. Route overlap was lowest for trips made by car plus walk (22%). The magnitude of difference depended on other journey characteristics, including travelling via intermediate destinations, distance, and use of busy roads. In conclusion, GIS routes may be acceptable for distance estimation and to explore potential routes, particularly active commuting. However, GPS should be used to obtain accurate estimates of environmental contexts in which commuting behaviour actually occurs. Public health researchers should bear these considerations in mind when studying the geographical determinants and health implications of commuting behaviour, and when recommending policy changes to encourage active travel.The Commuting and Health in Cambridge study was developed by David Ogilvie, Simon Griffin, Andy Jones and Roger Mackett and initially funded under the auspices of the Centre for Diet and Activity Research (CEDAR), a UKCRC Public Health Research Centre of Excellence (087636/Z/08/Z and ES/G007462/1). Funding from the British Heart Foundation, Economic and Social Research Council, Medical Research Council, National Institute for Health Research and the Wellcome Trust, under the auspices of the UK Clinical Research Collaboration, is gratefully acknowledged. The study is now funded by the National Institute for Health Research Public Health Research programme (project number 09/3001/06: see http://www.phr.nihr.ac.uk/funded_projects). David Ogilvie is supported by the Medical Research Council (Unit Programme number MC_UU_12015/6). Jenna Panter is supported by an NIHR post-doctoral fellowship (NIHR-PDF-2012-05-157). The views and opinions expressed herein are those of the authors and do not necessarily reflect those of the NIHR PHR programme or the Department of Health. The funders had no role in study design, data collection and analysis, the decision to publish, or the preparation of the manuscript. We thank all staff from the MRC Epidemiology Unit Functional Group Team, in particular for study coordination and data collection (led by Cheryl Chapman), physical activity data processing and data management.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.jth.2014.10.00

    Using spatial equity analysis in the process evaluation of environmental interventions to tackle obesity: the healthy towns programme in England.

    Get PDF
    INTRODUCTION: Process evaluations of environmental public health interventions tend not to consider issues of spatial equity in programme delivery. However, an intervention is unlikely to be effective if it is not accessible to those in need. Methods are required to enable these considerations to be integrated into evaluations. Using the Healthy Towns programme in England, we demonstrate the potential of spatial equity analysis in the evaluation of environmental interventions for diet and physical activity, examining whether the programme was delivered to those in greatest need. METHODS: Locations of new physical infrastructure, such as cycle lanes, gyms and allotments, were mapped using a geographic information system. A targeting ratio was computed to indicate how well-located the infrastructure was in relation to those at whom it was specifically aimed, as detailed in the relevant project documentation, as well as to generally disadvantaged populations defined in terms of U.K. Census data on deprivation, age and ethnicity. Differences in targeting were examined using Kruskal-Wallis and t-tests. RESULTS: The 183 separate intervention components identified were generally well located, with estimated targeting ratios above unity for all population groups of need, except for black and ethnic minorities and children aged 5-19 years. There was no evidence that clustering of population groups influenced targeting, or that trade-offs existed when components were specifically targeted at more than one group. CONCLUSIONS: The analysis of spatial equity is a valuable initial stage in assessing the provision of environmental interventions. The Healthy Towns programme can be described as well targeted in that interventions were for the most part located near populations of need.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Human Papillomavirus Vaccine Uptake After a Tailored, Online Educational Intervention for Female University Students: A Randomized Controlled Trial

    Full text link
    Background: Educational interventions may be a strategy to increase human papillomavirus (HPV) vaccination among female university students, but studies to date have shown mixed results. This study evaluated the effect of MeFirst, an individually tailored, online educational intervention, on HPV vaccine-related knowledge, vaccination intention, and uptake among previously unvaccinated female university students. Methods: All female students aged 18?26 years who reported being unvaccinated against HPV at a midwestern university were invited via email to enroll. Participants completed an online survey that assessed baseline HPV vaccine-related knowledge, attitudes and vaccination intention. Participants (n?=?661) were then randomized to receive either an educational website automatically tailored to their baseline survey responses (MeFirst intervention) or a standard CDC information factsheet on HPV vaccine (control). Vaccine uptake and repeat knowledge and attitude measures were assessed with online surveys 3 months following the intervention and analyzed using logistic regression models. Results: HPV vaccine uptake was similar in both the MeFirst and control groups at 3 months following the intervention (p?=?0.98). Three months after the intervention, the proportion of participants with high knowledge regarding HPV vaccination increased from baseline (32% to 50%; p?Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140136/1/jwh.2015.5251.pd

    Residential neighbourhood greenspace is associated with reduced risk of incident diabetes in older people: a prospective cohort study

    Get PDF
    Abstract Background Three cross sectional studies suggest that neighbourhood greenspace may protect against incident diabetes. This study uses data from a longitudinal study with a large sample size to investigate the association between greenspace and the occurrence of incident diabetes over time. Methods Data was from the European Prospective Investigation of Cancer Norfolk, UK, cohort, recruitment 1993–2007 (N = 23,865). Neighbourhoods were defined as 800 m circular buffers around participants’ home locations, according to their home postcode (zip code). Greenspace exposure was defined as the percentage of the home neighbourhood that was woodland, grassland, arable land, mountain, heath and bog, according to the UK Land Cover Map. Cox proportional hazards regression examined the association between neighbourhood greenspace exposure and incident diabetes. The population attributable fraction assessed the proportion of diabetes cases attributable to exposure to least green neighbourhoods. Mediation analysis assessed if physical activity explained associations between greenspace and diabetes. Interaction analysis was used to test for the modifying effect of rurality and socio-economic status on the relationship between greenspace and diabetes. Models were adjusted for known and hypothesised confounders. Results The mean age of participants was 59 years at baseline and 55.1% were female. The mean follow-up time was 11.3 years. Individuals living in the greenest neighbourhood quartile had a 19% lower relative hazard of developing diabetes (HR 0.81; 95% CI 0.67, 0.99; p = 0.035; linear trend p = 0.010). The hazard ratio remained similar (HR 0.81; 95% CI 0.65, 0.99; p = 0.042) after adjusting for age, sex, BMI, whether a parent had been diagnosed with diabetes and socio-economic status at the individual and neighbourhood level. A HR of 0.97 was attributed to the pathway through physical activity in a fully adjusted model, although this was non-significant (95% CI 0.88, 1.08; p = 0.603). The incidence of diabetes in the least green neighbourhoods (with 20% greenspace on average) would fall by 10.7% (95% CI −2.1%, 25.2%; p = 0.106) if they were as green as the average neighbourhood observed across the whole cohort (59% greenspace on average). There were no significant interactions between rurality or socio-economic status and level of greenspace. Conclusions Greener home neighbourhoods may protect against risk of diabetes in older adults, although this study does not support a mediation role for physical activity. Causal mechanisms underlying the associations require further investigation

    Neighbourhood, Route and Workplace-Related Environmental Characteristics Predict Adults' Mode of Travel to Work

    Get PDF
    Commuting provides opportunities for regular physical activity which can reduce the risk of chronic disease. Commuters' mode of travel may be shaped by their environment, but understanding of which specific environmental characteristics are most important and might form targets for intervention is limited. This study investigated associations between mode choice and a range of objectively assessed environmental characteristics.Participants in the Commuting and Health in Cambridge study reported where they lived and worked, their usual mode of travel to work and a variety of socio-demographic characteristics. Using geographic information system (GIS) software, 30 exposure variables were produced capturing characteristics of areas around participants' homes and workplaces and their shortest modelled routes to work. Associations between usual mode of travel to work and personal and environmental characteristics were investigated using multinomial logistic regression.Of the 1124 respondents, 50% reported cycling or walking as their usual mode of travel to work. In adjusted analyses, home-work distance was strongly associated with mode choice, particularly for walking. Lower odds of walking or cycling rather than driving were associated with a less frequent bus service (highest versus lowest tertile: walking OR 0.61 [95% CI 0.20–1.85]; cycling OR 0.43 [95% CI 0.23–0.83]), low street connectivity (OR 0.22, [0.07–0.67]; OR 0.48 [0.26–0.90]) and free car parking at work (OR 0.24 [0.10–0.59]; OR 0.55 [0.32–0.95]). Participants were less likely to cycle if they had access to fewer destinations (leisure facilities, shops and schools) close to work (OR 0.36 [0.21–0.62]) and a railway station further from home (OR 0.53 [0.30–0.93]). Covariates strongly predicted travel mode (pseudo r-squared 0.74).Potentially modifiable environmental characteristics, including workplace car parking, street connectivity and access to public transport, are associated with travel mode choice, and could be addressed as part of transport policy and infrastructural interventions to promote active commuting

    The association between air pollution and type 2 diabetes in a large cross-sectional study in Leicester: The CHAMPIONS Study

    Get PDF
    Background: Observational evidence suggests there is an association between air pollution and type 2 diabetes; however, there is high risk of bias. Objective: To investigate the association between air pollution and type 2 diabetes, while reducing bias due to exposure assessment, outcome assessment, and confounder assessment. Methods: Data were collected from 10,443 participants in three diabetes screening studies in Leicestershire, UK. Exposure assessment included standard, prevailing estimates of outdoor nitrogen dioxide and particulate matter concentrations in a 1 × 1 km area at the participant's home postcode. Three-year exposure was investigated in the primary analysis and one-year exposure in a sensitivity analysis. Outcome assessment included the oral glucose tolerance test for type 2 diabetes. Confounder assessment included demographic factors (age, sex, ethnicity, smoking, area social deprivation, urban or rural location), lifestyle factors (body mass index and physical activity), and neighbourhood green space. Results: Nitrogen dioxide and particulate matter concentrations were associated with type 2 diabetes in unadjusted models. There was no statistically significant association between nitrogen dioxide concentration and type 2 diabetes after adjustment for demographic factors (odds: 1.08; 95% CI: 0.91, 1.29). The odds of type 2 diabetes was 1.10 (95% CI: 0.92, 1.32) after further adjustment for lifestyle factors and 0.91 (95% CI: 0.72, 1.16) after yet further adjustment for neighbourhood green space. The associations between particulate matter concentrations and type 2 diabetes were also explained away by demographic factors. There was no evidence of exposure definition bias. Conclusions: Demographic factors seemed to explain the association between air pollution and type 2 diabetes in this cross-sectional study. High-quality longitudinal studies are needed to improve our understanding of the association

    Mechanochromic and thermochromic sensors based on graphene infused polymer opals

    Get PDF
    High quality opal‐like photonic crystals containing graphene are fabricated using evaporation‐driven self‐assembly of soft polymer colloids. A miniscule amount of pristine graphene within a colloidal crystal lattice results in the formation of colloidal crystals with a strong angle‐dependent structural color and a stop band that can be reversibly shifted across the visible spectrum. The crystals can be mechanically deformed or can reversibly change color as a function of their temperature, hence their sensitive mechanochromic and thermochromic response make them attractive candidates for a wide range of visual sensing applications. In particular, it is shown that the crystals are excellent candidates for visual strain sensors or integrated time‐temperature indicators which act over large temperature windows. Given the versatility of these crystals, this method represents a simple, inexpensive, and scalable approach to produce multifunctional graphene infused synthetic opals and opens up exciting applications for novel solution‐processable nanomaterial based photonics

    Controlled assembly and reduction of graphene oxide networks for conductive composites

    Get PDF
    Work presented at the 2019 ACS Spring National Meeting, March 28-April 4, 2019 · Orlando, FL.Graphene has attracted enormous interest in the scientific community as the first 2D material with exceptional mechanical, electronic and thermal properties. Pristine Graphene is notoriously difficult to process for macroscale applications, to overcome this many people use graphene oxide (GO) instead. GO is water soluble and easily functionalised and so can be simply processed into various systems. GO lacks the exceptional electronic properties of graphene due to structural disorder, therefore an important area of research is on the reduction of GO, which partly restores the structure and properties of graphene. Various techniques have been developed to perform the reduction step. We report a simple approach for preparing conductive Polymer Latex-rGO composites by using a latex-assembly method. After a treatment in the oven at low T, we can reduce the GO in situ. We make use of the inherent GO properties to optimise the aqueous composite fabrication, which is scalable and adaptable, and then restore conductivity with a simple, low temperature, heating step; opening up pathways to tunable electronic composite materials on a large scale.Peer reviewe

    Structural defects modulate electronic and nanomechanical properties of 2D materials

    Get PDF
    Two-dimensional materials such as graphene and molybdenum disulfide are often subject to out-of-plane deformation, but its influence on electronic and nanomechanical properties remains poorly understood. These physical distortions modulate important properties which can be studied by atomic force microscopy and Raman spectroscopic mapping. Herein, we have identified and investigated different geometries of line defects in graphene and molybdenum disulfide such as standing collapsed wrinkles, folded wrinkles, and grain boundaries that exhibit distinct strain and doping. In addition, we apply nanomechanical atomic force microscopy to determine the influence of these defects on local stiffness. For wrinkles of similar height, the stiffness of graphene was found to be higher than that of molybdenum disulfide by 10–15% due to stronger in-plane covalent bonding. Interestingly, deflated graphene nanobubbles exhibited entirely different characteristics from wrinkles and exhibit the lowest stiffness of all graphene defects. Density functional theory reveals alteration of the bandstructures of graphene and MoS2 due to the wrinkled structure; such modulation is higher in MoS2 compared to graphene. Using this approach, we can ascertain that wrinkles are subject to significant strain but minimal doping, while edges show significant doping and minimal strain. Furthermore, defects in graphene predominantly show compressive strain and increased carrier density. Defects in molybdenum disulfide predominantly show tensile strain and reduced carrier density, with increasing tensile strain minimizing doping across all defects in both materials. The present work provides critical fundamental insights into the electronic and nanomechanical influence of intrinsic structural defects at the nanoscale, which will be valuable in straintronic device engineering
    corecore