948 research outputs found

    Momentum transferred to a trapped Bose-Einstein condensate by stimulated light scattering

    Full text link
    The response of a trapped Bose-Einstein condensed gas to a density perturbation generated by a two-photon Bragg pulse is investigated by solving the time-dependent Gross-Pitaevskii equation. We calculate the total momentum imparted to the condensate as a function of both the time duration of the pulse and the frequency difference of the two laser beams. The role of the dynamic response function in characterizing the time evolution of the system is pointed out, with special emphasis to the phonon regime. Numerical simulations are compared with the predictions of local density approximation. The relevance of our results for the interpretation of current experiments is also discussed.Comment: 7 pages, 3 postscript figure

    Helium nanodroplets and trapped Bose-Einstein condensates as prototypes of finite quantum fluids

    Full text link
    Helium nanodroplets and trapped Bose-Einstein condensates in dilute atomic gases offer complementary views of fundamental aspects of quantum many-body systems. We discuss analogies and differences, stressing their common theoretical background and peculiar features. We briefly review some relevant concepts, such as the meaning of superfluidity in finite systems, the behavior of elementary excitations and collective modes, as well as rotational properties and quantized vorticity.Comment: 15 pages, 1 eps figure, review article for J. Chem. Phys., thematic issue on Helium Nanodroplet

    Ehrenfest theorem, Galilean invariance and nonlinear Schr\"odinger equations

    Full text link
    Galilean invariant Schr\"odinger equations possessing nonlinear terms coupling the amplitude and the phase of the wave function can violate the Ehrenfest theorem. An example of this kind is provided. The example leads to the proof of the theorem: A Galilean invariant Schr\"odinger equation derived from a lagrangian density obeys the Ehrenfest theorem. The theorem holds for any linear or nonlinear lagrangian.Comment: Latex format, no figures, submitted to journal of physics

    Shape deformations and angular momentum transfer in trapped Bose-Einstein condensates

    Full text link
    Angular momentum can be transferred to a trapped Bose-Einstein condensate by distorting its shape with an external rotating field, provided the rotational frequency is larger than a critical frequency fixed by the energy and angular momentum of the excited states of the system. By using the Gross-Pitaevskii equation and sum rules, we explore the dependence of such a critical frequency on the multipolarity of the excitations and the asymmetry of the confining potential. We also discuss its possible relevance for vortex nucleation in rotating traps.Comment: 4 pages revtex, 2 figures include

    Dynamics of two colliding Bose-Einstein condensates in an elongated magneto-static trap

    Full text link
    We study the dynamics of two interacting Bose-Einstein condensates, by numerically solving two coupled Gross-Pitaevskii equations at zero temperature. We consider the case of a sudden transfer of atoms between two trapped states with different magnetic moments: the two condensates are initially created with the same density profile, but are trapped into different magnetic potentials, whose minima are vertically displaced by a distance much larger than the initial size of both condensates. Then the two condensates begin to perform collective oscillations, undergoing a complex evolution, characterized by collisions between the two condensates. We investigate the effects of their mutual interaction on the center-of-mass oscillations and on the time evolution of the aspect ratios. Our theoretical analysis provides a useful insight into the recent experimental observations by Maddaloni et al., cond-mat/0003402.Comment: 8 pages, 7 figures, RevTe

    Parametric excitation of a Bose-Einstein condensate in a 1D optical lattice

    Full text link
    We study the response of a Bose-Einstein condensate to a periodic modulation of the depth of an optical lattice. Using Gross-Pitaevskii theory, we show that a modulation at frequency Omega drives the parametric excitation of Bogoliubov modes with frequency Omega/2. The ensuing nonlinear dynamics leads to a rapid broadening of the momentum distribution and a consequent large increase of the condensate size after free expansion. We show that this process does not require the presence of a large condensate depletion. Our results reproduce the main features of the spectrum measured in the superfluid phase by Stoeferle et al., Phys. Rev. Lett. 92, 130403 (2004).Comment: 4 pages, 4 figures, more results added, to appear in PRA Rapid Communication

    The fate of phonons in freely expanding Bose-Einstein condensates

    Full text link
    Phonon-like excitations can be imprinted into a trapped Bose-Einstein condensate of cold atoms using light scattering. If the condensate is suddenly let to freely expand, the initial phonons lose their collective character by transferring their energy and momentum to the motion of individual atoms. The basic mechanisms of this evaporation process are investigated by using the Gross-Pitaevskii theory and dynamically rescaled Bogoliubov equations. Different regimes of evaporation are shown to occur depending on the phonon wavelength. Distinctive signatures of the evaporated phonons are visible in the density distribution of the expanded gas, thus providing a new type of spectroscopy of Bogoliubov excitations.Comment: 13 pages, 16 figure
    corecore