186 research outputs found
Besov regularity for operator equations on patchwise smooth manifolds
We study regularity properties of solutions to operator equations on
patchwise smooth manifolds such as, e.g., boundaries of
polyhedral domains . Using suitable biorthogonal
wavelet bases , we introduce a new class of Besov-type spaces
of functions
. Special attention is paid on the
rate of convergence for best -term wavelet approximation to functions in
these scales since this determines the performance of adaptive numerical
schemes. We show embeddings of (weighted) Sobolev spaces on
into , ,
which lead us to regularity assertions for the equations under consideration.
Finally, we apply our results to a boundary integral equation of the second
kind which arises from the double layer ansatz for Dirichlet problems for
Laplace's equation in .Comment: 42 pages, 3 figures, updated after peer review. Preprint: Bericht
Mathematik Nr. 2013-03 des Fachbereichs Mathematik und Informatik,
Universit\"at Marburg. To appear in J. Found. Comput. Mat
Optimal Approximation of Elliptic Problems by Linear and Nonlinear Mappings I
We study the optimal approximation of the solution of an operator equation
Au=f by linear and nonlinear mappings
Optimal Approximation of Elliptic Problems by Linear and Nonlinear Mappings III: Frames
We study the optimal approximation of the solution of an operator equation by
certain n-term approximations with respect to specific classes of frames. We
study worst case errors and the optimal order of convergence and define
suitable nonlinear frame widths.
The main advantage of frames compared to Riesz basis, which were studied in
our earlier papers, is the fact that we can now handle arbitrary bounded
Lipschitz domains--also for the upper bounds.
Key words: elliptic operator equation, worst case error, frames, nonlinear
approximation, best n-term approximation, manifold width, Besov spaces on
Lipschitz domainsComment: J. Complexity, to appear. Final version, minor mistakes correcte
Besov regularity of solutions to the p-Poisson equation
In this paper, we study the regularity of solutions to the -Poisson
equation for all . In particular, we are interested in smoothness
estimates in the adaptivity scale , , of Besov spaces. The regularity in this scale determines the
order of approximation that can be achieved by adaptive and other nonlinear
approximation methods. It turns out that, especially for solutions to
-Poisson equations with homogeneous Dirichlet boundary conditions on bounded
polygonal domains, the Besov regularity is significantly higher than the
Sobolev regularity which justifies the use of adaptive algorithms. This type of
results is obtained by combining local H\"older with global Sobolev estimates.
In particular, we prove that intersections of locally weighted H\"older spaces
and Sobolev spaces can be continuously embedded into the specific scale of
Besov spaces we are interested in. The proof of this embedding result is based
on wavelet characterizations of Besov spaces.Comment: 45 pages, 2 figure
Optimal Approximation of Elliptic Problems II: Wavelet Methods
This talk is concerned with optimal approximations
of the solutions of elliptic boundary value
problems. After briefly recalling the fundamental
concepts of optimality, we shall especially
discuss best n-term approximation schemes based
on wavelets. We shall mainly be concerned with
the Poisson equation in Lipschitz domains. It
turns out that wavelet schemes are suboptimal
in general, but nevertheless they are superior to
the usual uniform approximation methods.
Moreover, for specific domains, i.e., for
polygonal domains, wavelet methods are
in fact optimal. These results are based on
regularity estimates of the exact solution
in a specific scale of Besov spaces
The continuous shearlet transform in arbitrary dimensions
This paper is concerned with the generalization of the continuous shearlet transform to higher dimensions. Similar to the two-dimensional case, our approach is based on translations, anisotropic dilations and specific shear matrices. We show that the associated integral transform again originates from a square-integrable representation of a specific group, the full n-variate shearlet group. Moreover, we verify that by applying the coorbit theory, canonical scales of smoothness spaces and associated Banach frames can be derived. We also indicate how our transform can be used to characterize singularities in signals
- …