77 research outputs found
Content-based Propagation of User Markings for Interactive Segmentation of Patterned Images
Efficient and easy segmentation of images and volumes is of great practical
importance. Segmentation problems that motivate our approach originate from
microscopy imaging commonly used in materials science, medicine, and biology.
We formulate image segmentation as a probabilistic pixel classification
problem, and we apply segmentation as a step towards characterising image
content. Our method allows the user to define structures of interest by
interactively marking a subset of pixels. Thanks to the real-time feedback, the
user can place new markings strategically, depending on the current outcome.
The final pixel classification may be obtained from a very modest user input.
An important ingredient of our method is a graph that encodes image content.
This graph is built in an unsupervised manner during initialisation and is
based on clustering of image features. Since we combine a limited amount of
user-labelled data with the clustering information obtained from the unlabelled
parts of the image, our method fits in the general framework of semi-supervised
learning. We demonstrate how this can be a very efficient approach to
segmentation through pixel classification.Comment: 9 pages, 7 figures, PDFLaTe
- …