2,406 research outputs found
On the estimation of swimming and flying forces from wake measurements
The transfer of momentum from an animal to fluid in
its wake is fundamental to many swimming and flying
modes of locomotion. Hence, properties of the wake are
commonly studied in experiments to infer the magnitude
and direction of locomotive forces. The determination of
which wake properties are necessary and sufficient to
empirically deduce swimming and flying forces is
currently made ad hoc. This paper systematically
addresses the question of the minimum number of wake
properties whose combination is sufficient to determine
swimming and flying forces from wake measurements. In
particular, it is confirmed that the spatial velocity
distribution (i.e. the velocity field) in the wake is by itself insufficient to determine swimming and flying forces, and must be combined with the fluid pressure distribution. Importantly, it is also shown that the spatial distribution of rotation and shear (i.e. the vorticity field) in the wake is by itself insufficient to determine swimming and flying forces, and must be combined with a parameter that is analogous to the fluid pressure. The measurement of this parameter in the wake is shown to be identical to a calculation of the added-mass contribution from fluid surrounding vortices in the wake, and proceeds identically to a measurement of the added-mass traditionally associated with fluid surrounding solid bodies. It is demonstrated that the velocity/pressure perspective is equivalent to the vorticity/vortex-added-mass approach in the equations of motion. A model is developed to approximate the contribution of wake vortex added-mass to locomotive forces, given a combination of velocity and vorticity field measurements in the wake. A dimensionless parameter, the wake vortex ratio (denoted Wa), is introduced to predict the types of wake flows for which the contribution of forces due to wake vortex added-mass will become non-negligible. Previous wake analyses are reexamined in light of this parameter to infer the existence and importance of wake vortex added-mass in those cases. In the process, it is demonstrated that the commonly used time-averaged force estimates based on wake
measurements are not sufficient to prove that an animal is
generating the locomotive forces necessary to sustain flight
or maintain neutral buoyancy
Role of vertical migration in biogenic ocean mixing
Recent efforts to empirically measure and numerically simulate biogenic ocean mixing have consistently observed low mixing efficiency. This suggests that the buoyancy flux achieved by swimming animals in the ocean may be negligible in spite of the observed large kinetic energy dissipation rates. The present letter suggests that vertical migration across isopycnals may be necessary in order to generate overturning and subsequent mixing at length scales significantly larger than the individual animals. The animal-fluid interactions are simulated here using a simplified potential flow model of solid spheres migrating vertically in a stably stratified fluid. The interaction of successive solid bodies with each parcel of fluid is shown to lead, under certain conditions, to vertical displacement of the fluid parcels over distances much larger than the individual body size. These regions of displaced fluid are unstably stratified and, hence, amenable to large-scale overturning and efficient mixing
Optimal vortex formation as a unifying principle in biological propulsion
I review the concept of optimal vortex formation and examine its relevance to propulsion in biological and bio-inspired systems, ranging from the human heart to underwater vehicles. By using examples from the existing literature and new analyses, I show that optimal vortex formation can potentially serve as a unifying principle to understand the diversity of solutions used to achieve propulsion in nature. Additionally, optimal vortex formation can provide a framework in which to design engineered propulsions systems that are constrained by pressures unrelated to biology. Finally, I analyze the relationship between optimal vortex formation and previously observed constraints on Strouhal frequency during animal locomotion in air and water. It is proposed that the Strouhal frequency constraint is but one consequence of the process of optimal vortex formation and that others remain to be discovered
Note on the induced Lagrangian drift and added-mass of a vortex
Darwin (1953) introduced a simple heuristic that relates the Lagrangian fluid drift induced by a solid body propagating in irrotational flow to its virtual- or added-mass. The force required to accelerate the solid body must also overcome this added-mass. An extension of Darwin's (1953) method to the case of vortices propagating in a real fluid is described here. Experiments are conducted to demonstrate the existence of an added-mass effect during uni-directional vortex motion, which is analogous to the effect of solid bodies in potential flow. The definition of the vortex added-mass coefficient is modified from the solid body case to account for entrainment of ambient fluid by the vortex. This modified coefficient for propagating vortices is shown to be equal in magnitude to the classical coefficient for a solid body of equivalent boundary geometry. An implication of these results is that the vortex added-mass concept can be used as a surrogate for the velocity potential, in order to facilitate calculations of the pressure contribution to forces required to set fluid into unsteady vortical motion. Application of these results to unsteady wake analyses and fluid–structure interactions such as vortex-induced vibrations is suggested
Theoretical framework to surpass the Betz limit using unsteady fluid mechanics
The Betz limit expresses the maximum proportion of the kinetic energy flux incident on an energy conversion device that can be extracted from an unbounded flow. The derivation of the Betz limit requires an assumption of steady flow through a notional actuator disk that is stationary in the streamwise direction. The present derivation relaxes the assumptions of steady flow and streamwise actuator disk stationarity, which expands the physically realizable parameter space of flow conditions upstream and downstream of the actuator disk. A key consequence of this generalization is the existence of unsteady motions that can, in principle, lead to energy conversion efficiencies that exceed the Betz limit not only transiently but also in time-averaged performance. Potential physical implementations of those unsteady motions are speculated
Introduction to Focus Issue: Lagrangian Coherent Structures
The topic of Lagrangian coherent structures (LCS) has been a rapidly growing area of research in nonlinear dynamics for almost a decade. It provides a means to rigorously define and detect transport barriers in dynamical systems with arbitrary time dependence and has a wealth of applications, particularly to fluid flow problems. Here, we give a short introduction to the topic of LCS and review the new work presented in this Focus Issue
Inferring transportation modes from GPS trajectories using a convolutional neural network
Identifying the distribution of users' transportation modes is an essential
part of travel demand analysis and transportation planning. With the advent of
ubiquitous GPS-enabled devices (e.g., a smartphone), a cost-effective approach
for inferring commuters' mobility mode(s) is to leverage their GPS
trajectories. A majority of studies have proposed mode inference models based
on hand-crafted features and traditional machine learning algorithms. However,
manual features engender some major drawbacks including vulnerability to
traffic and environmental conditions as well as possessing human's bias in
creating efficient features. One way to overcome these issues is by utilizing
Convolutional Neural Network (CNN) schemes that are capable of automatically
driving high-level features from the raw input. Accordingly, in this paper, we
take advantage of CNN architectures so as to predict travel modes based on only
raw GPS trajectories, where the modes are labeled as walk, bike, bus, driving,
and train. Our key contribution is designing the layout of the CNN's input
layer in such a way that not only is adaptable with the CNN schemes but
represents fundamental motion characteristics of a moving object including
speed, acceleration, jerk, and bearing rate. Furthermore, we ameliorate the
quality of GPS logs through several data preprocessing steps. Using the clean
input layer, a variety of CNN configurations are evaluated to achieve the best
CNN architecture. The highest accuracy of 84.8% has been achieved through the
ensemble of the best CNN configuration. In this research, we contrast our
methodology with traditional machine learning algorithms as well as the seminal
and most related studies to demonstrate the superiority of our framework.Comment: 12 pages, 3 figures, 7 tables, Transportation Research Part C:
Emerging Technologie
Transport of inertial particles by Lagrangian coherent structures : application to predator-prey interaction in jellyfish feeding
We use a dynamical systems approach to identify coherent structures from often chaotic motions of inertial particles in open flows. We show that particle Lagrangian coherent structures (pLCS) act as boundaries between regions in which particles have different kinematics. They provide direct geometric information about the motion of ensembles of inertial particles, which is helpful to understand their transport. As an application, we apply the methodology to a planktonic predator–prey system in which moon jellyfish Aurelia aurita uses its body motion to generate a flow that transports small plankton such as copepods to its vicinity for feeding. With the flow field generated by the jellyfish measured experimentally and the dynamics of plankton described by a modified Maxey–Riley equation, we use the pLCS to identify a capture region in which prey can be captured by the jellyfish. The properties of the pLCS and the capture region enable analysis of the effect of several physiological and mechanical parameters on the predator–prey interaction, such as prey size, escape force, predator perception, etc. The methods developed here are equally applicable to multiphase and granular flows, and can be generalized to any other particle equation of motion, e.g. equations governing the motion of reacting particles or charged particles
An overview of a Lagrangian method for analysis of animal wake dynamics
The fluid dynamic analysis of animal wakes is becoming increasingly popular in studies of animal swimming and flying, due in part to the development of quantitative flow visualization techniques such as digital particle imaging velocimetry (DPIV). In most studies, quasi-steady flow is assumed and the flow analysis is based on velocity and/or vorticity fields measured at a single time instant during the stroke cycle. The assumption of quasi-steady flow leads to neglect of unsteady (time-dependent) wake vortex added-mass effects, which can contribute significantly to the instantaneous locomotive forces. In this paper we review a Lagrangian approach recently introduced to determine unsteady wake vortex structure by tracking the trajectories of individual fluid particles in the flow, rather than by analyzing the velocity/vorticity fields at fixed locations and single instants in time as in the Eulerian perspective. Once the momentum of the wake vortex and its added mass are determined, the corresponding unsteady locomotive forces can be quantified. Unlike previous studies that estimated the time-averaged forces over the stroke cycle, this approach enables study of how instantaneous locomotive forces evolve over time. The utility of this method for analyses of DPIV velocity measurements is explored, with the goal of demonstrating its applicability to data that are typically available to investigators studying animal swimming and flying. The methods are equally applicable to computational fluid dynamics studies where velocity field calculations are available
- …