43 research outputs found

    Lignin biomarkers as tracers of mercury sources in lakes water column

    Get PDF
    This study presents the role of specific terrigenous organic compounds as important vectors of mercury (Hg) transported from watersheds to lakes of the Canadian boreal forest. In order to differentiate the autochthonous from the allochthonous organic matter (OM), lignin derived biomarker signatures [Lambda, S/V, C/V, P/(V ? S), 3,5-Bd/V and (Ad/Al)v] were used. Since lignin is exclusively produced by terrigenous plants, this approach can give a non equivocal picture of the watershed inputs to the lakes. Moreover, it allows a characterization of the source of OM and its state of degradation. The water column of six lakes from the Canadian Shield was sampled monthly between June and September 2005. Lake total dissolved Hg concentrations and Lambda were positively correlated, meaning that Hg and ligneous inputs are linked (dissolved OM r2 = 0.62, p\0.0001; particulate OM r2 = 0.76, p\0.0001). Ratios of P/(V ? S) and 3,5-Bd/V from both dissolved OM and particulate OM of the water column suggest an inverse relationship between the progressive state of pedogenesis and maturation of the OM in soil before entering the lake, and the Hg concentrations in the water column. No relation was found between Hg levels in the lakes and the watershed flora composition—angiosperm versus gymnosperm or woody versus non-woody compounds. This study has significant implications for watershed management of ecosystems since limiting fresh terrestrial OM inputs should reduce Hg inputs to the aquatic systems. This is particularly the case for largescale land-use impacts, such as deforestation, agriculture and urbanization, associated to large quantities of soil OM being transferred to aquatic systems

    β-Diversity and Species Accumulation in Antarctic Coastal Benthos: Influence of Habitat, Distance and Productivity on Ecological Connectivity

    Get PDF
    High Antarctic coastal marine environments are comparatively pristine with strong environmental gradients, which make them important places to investigate biodiversity relationships. Defining how different environmental features contribute to shifts in β-diversity is especially important as these shifts reflect both spatio-temporal variations in species richness and the degree of ecological separation between local and regional species pools. We used complementary techniques (species accumulation models, multivariate variance partitioning and generalized linear models) to assess how the roles of productivity, bio-physical habitat heterogeneity and connectivity change with spatial scales from metres to 100's of km. Our results demonstrated that the relative importance of specific processes influencing species accumulation and β–diversity changed with increasing spatial scale, and that patterns were never driven by only one factor. Bio-physical habitat heterogeneity had a strong influence on β-diversity at scales <290 km, while the effects of productivity were low and significant only at scales >40 km. Our analysis supports the emphasis on the analysis of diversity relationships across multiple spatial scales and highlights the unequal connectivity of individual sites to the regional species pool. This has important implications for resilience to habitat loss and community homogenisation, especially for Antarctic benthic communities where rates of recovery from disturbance are slow, there is a high ratio of poor-dispersing and brooding species, and high biogenic habitat heterogeneity and spatio-temporal variability in primary production make the system vulnerable to disturbance. Consequently, large areas need to be included within marine protected areas for effective management and conservation of these special ecosystems in the face of increasing anthropogenic disturbance

    Executive Function in Pediatric Bipolar Disorder and Attention-Deficit Hyperactivity Disorder: In Search of Distinct Phenotypic Profiles

    Full text link

    Review Validation, verification and comparison: Adopting new methods in water microbiology#

    Get PDF
    Until recently there has been little formal guidance on procedures for adopting new methods in water microbiology. However, the European Union Drinking Water Directive of 1998 specified methods that were to be used for the microbiological parameters, most being ISO methods, but allowed the use of alternative methods that were “at least as reliable”. At that time, there were no published procedures for demonstrating equivalency of performance between methods. Work commissioned by the UK Drinking Water Inspectorate (DWI) developed suitable analytical and statistical protocols for comparing microbiological methods. The statistical aspects have been refined and recently published as ISO 17994. ISO has also recently published guidance on the validation of methods for water microbiology (ISO/TR 13843), which gives guidance for developers of new media on what performance information is required. These developments provide a framework for the enhancement of validation and verification procedures within a laboratory's quality system for evaluating new methods prior to their adoption. This paper overviews these developments in light of the author's experience in their use and discusses issues relating to the analytical procedures and the statistical rationale employed (including the concept of “equivalency” of performance between methods). Water SA Vol.31 (3) 2005: pp.393-39
    corecore