53 research outputs found

    Leukotriene biosynthesis inhibition ameliorates acute lung injury following hemorrhagic shock in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemorrhagic shock followed by resuscitation is conceived as an insult frequently induces a systemic inflammatory response syndrome and oxidative stress that results in multiple-organ dysfunction syndrome including acute lung injury. MK-886 is a leukotriene biosynthesis inhibitor exerts an anti inflammatory and antioxidant activity.</p> <p>Objectives</p> <p>The objective of present study was to assess the possible protective effect of MK-886 against hemorrhagic shock-induced acute lung injury via interfering with inflammatory and oxidative pathways.</p> <p>Materials and methods</p> <p>Eighteen adult Albino rats were assigned to three groups each containing six rats: group I, sham group, rats underwent all surgical instrumentation but neither hemorrhagic shock nor resuscitation was done; group II, Rats underwent hemorrhagic shock (HS) for 1 hr then resuscitated with Ringer's lactate (1 hr) (induced untreated group, HS); group III, HS + MK-886 (0.6 mg/kg i.p. injection 30 min before the induction of HS, and the same dose was repeated just before reperfusion period). At the end of experiment (2 hr after completion of resuscitation), blood samples were collected for measurement of serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The trachea was then isolated and bronchoalveolar lavage fluid (BALF) was carried out for measurement of leukotriene B<sub>4 </sub>(LTB<sub>4</sub>), leukotriene C<sub>4 </sub>(LTC<sub>4</sub>) and total protein. The lungs were harvested, excised and the left lung was homogenized for measurement of malondialdehyde (MDA) and reduced glutathione (GSH) and the right lung was fixed in 10% formalin for histological examination.</p> <p>Results</p> <p>MK-886 treatment significantly reduced the total lung injury score compared with the HS group (<it>P </it>< 0.05). MK-886 also significantly decreased serum TNF-α & IL-6; lung MDA; BALF LTB<sub>4</sub>, LTC<sub>4 </sub>& total protein compared with the HS group (<it>P </it>< 0.05). MK-886 treatment significantly prevented the decrease in the lung GSH levels compared with the HS group (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>The results of the present study reveal that MK-886 may ameliorate lung injury in shocked rats via interfering with inflammatory and oxidative pathways implicating the role of leukotrienes in the pathogenesis of hemorrhagic shock-induced lung inflammation.</p

    Mitochondria are the main source and one of the targets of Pb (lead)-induced oxidative stress in the yeast Saccharomyces cerevisiae

    Get PDF
    The yeast Saccharomyces cerevisiae is a useful model organism for studying lead (Pb) toxicity. Yeast cells of a laboratory S. cerevisiae strain (WT strain) were incubated with Pb concentrations up to 1,000 μmol/l for 3 h. Cells exposed to Pb lost proliferation capacity without damage to the cell membrane, and they accumulated intracellular superoxide anion (O2 .−) and hydrogen peroxide (H2O2). The involvement of the mitochondrial electron transport chain (ETC) in the generation of reactive oxygen species (ROS) induced by Pb was evaluated. For this purpose, an isogenic derivative ρ0 strain, lacking mitochondrial DNA, was used. The ρ0 strain, without respiratory competence, displayed a lower intracellular ROS accumulation and a higher resistance to Pb compared to the WT strain. The kinetic study of ROS generation in yeast cells exposed to Pb showed that the production of O2 .− precedes the accumulation of H2O2, which is compatible with the leakage of electrons from the mitochondrial ETC. Yeast cells exposed to Pb displayed mutations at the mitochondrial DNA level. This is most likely a consequence of oxidative stress. In conclusion, mitochondria are an important source of Pb-induced ROS and, simultaneously, one of the targets of its toxicity.The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013

    Bone Marrow Derived Mesenchymal Stem Cells Inhibit Inflammation and Preserve Vascular Endothelial Integrity in the Lungs after Hemorrhagic Shock

    Get PDF
    Hemorrhagic shock (HS) and trauma is currently the leading cause of death in young adults worldwide. Morbidity and mortality after HS and trauma is often the result of multi-organ failure such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), conditions with few therapeutic options. Bone marrow derived mesenchymal stem cells (MSCs) are a multipotent stem cell population that has shown therapeutic promise in numerous pre-clinical and clinical models of disease. In this paper, in vitro studies with pulmonary endothelial cells (PECs) reveal that conditioned media (CM) from MSCs and MSC-PEC co-cultures inhibits PEC permeability by preserving adherens junctions (VE-cadherin and β-catenin). Leukocyte adhesion and adhesion molecule expression (VCAM-1 and ICAM-1) are inhibited in PECs treated with CM from MSC-PEC co-cultures. Further support for the modulatory effects of MSCs on pulmonary endothelial function and inflammation is demonstrated in our in vivo studies on HS in the rat. In a rat “fixed volume” model of mild HS, we show that MSCs administered IV potently inhibit systemic levels of inflammatory cytokines and chemokines in the serum of treated animals. In vivo MSCs also inhibit pulmonary endothelial permeability and lung edema with concurrent preservation of the vascular endothelial barrier proteins: VE-cadherin, Claudin-1, and Occludin-1. Leukocyte infiltrates (CD68 and MPO positive cells) are also decreased in lungs with MSC treatment. Taken together, these data suggest that MSCs, acting directly and through soluble factors, are potent stabilizers of the vascular endothelium and inflammation. These data are the first to demonstrate the therapeutic potential of MSCs in HS and have implications for the potential use of MSCs as a cellular therapy in HS-induced lung injury

    Parasite Burden and CD36-Mediated Sequestration Are Determinants of Acute Lung Injury in an Experimental Malaria Model

    Get PDF
    Although acute lung injury (ALI) is a common complication of severe malaria, little is known about the underlying molecular basis of lung dysfunction. Animal models have provided powerful insights into the pathogenesis of severe malaria syndromes such as cerebral malaria (CM); however, no model of malaria-induced lung injury has been definitively established. This study used bronchoalveolar lavage (BAL), histopathology and gene expression analysis to examine the development of ALI in mice infected with Plasmodium berghei ANKA (PbA). BAL fluid of PbA-infected C57BL/6 mice revealed a significant increase in IgM and total protein prior to the development of CM, indicating disruption of the alveolar–capillary membrane barrier—the physiological hallmark of ALI. In contrast to sepsis-induced ALI, BAL fluid cell counts remained constant with no infiltration of neutrophils. Histopathology showed septal inflammation without cellular transmigration into the alveolar spaces. Microarray analysis of lung tissue from PbA-infected mice identified a significant up-regulation of expressed genes associated with the gene ontology categories of defense and immune response. Severity of malaria-induced ALI varied in a panel of inbred mouse strains, and development of ALI correlated with peripheral parasite burden but not CM susceptibility. Cd36−/− mice, which have decreased parasite lung sequestration, were relatively protected from ALI. In summary, parasite burden and CD36-mediated sequestration in the lung are primary determinants of ALI in experimental murine malaria. Furthermore, differential susceptibility of mouse strains to malaria-induced ALI and CM suggests that distinct genetic determinants may regulate susceptibility to these two important causes of malaria-associated morbidity and mortality

    In vivo Hypoxia and a Fungal Alcohol Dehydrogenase Influence the Pathogenesis of Invasive Pulmonary Aspergillosis

    Get PDF
    Currently, our knowledge of how pathogenic fungi grow in mammalian host environments is limited. Using a chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA) and 1H-NMR metabolomics, we detected ethanol in the lungs of mice infected with Aspergillus fumigatus. This result suggests that A. fumigatus is exposed to oxygen depleted microenvironments during infection. To test this hypothesis, we utilized a chemical hypoxia detection agent, pimonidazole hydrochloride, in three immunologically distinct murine models of IPA (chemotherapeutic, X-CGD, and corticosteroid). In all three IPA murine models, hypoxia was observed during the course of infection. We next tested the hypothesis that production of ethanol in vivo by the fungus is involved in hypoxia adaptation and fungal pathogenesis. Ethanol deficient A. fumigatus strains showed no growth defects in hypoxia and were able to cause wild type levels of mortality in all 3 murine models. However, lung immunohistopathology and flow cytometry analyses revealed an increase in the inflammatory response in mice infected with an alcohol dehydrogenase null mutant strain that corresponded with a reduction in fungal burden. Consequently, in this study we present the first in vivo observations that hypoxic microenvironments occur during a pulmonary invasive fungal infection and observe that a fungal alcohol dehydrogenase influences fungal pathogenesis in the lung. Thus, environmental conditions encountered by invading pathogenic fungi may result in substantial fungal metabolism changes that influence subsequent host immune responses
    corecore