41 research outputs found
Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols
Author name used in this publication: Fu, Tzung-May.2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Recommended from our members
Development of the adjoint of the unified tropospheric-stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
Abstract. Atmospheric sensitivities (gradients), quantifying the atmospheric response to emissions or other perturbations, can provide meaningful insights on the underlying atmospheric chemistry or transport processes. Atmospheric adjoint modeling enables the calculation of receptor-oriented sensitivities of model outputs of interest to input parameters (e.g., emissions), overcoming the numerical cost of conventional (forward) modeling. The adjoint of the GEOS-Chem atmospheric chemistry-transport model is a widely used such model, but prior to v36 it lacked extensive stratospheric capabilities. Here, we present the development and evaluation of the discrete adjoint of the global chemistry-transport model (CTM) GEOS-Chem unified chemistry extension (UCX) for stratospheric applications, which extends the existing capabilities of the GEOS-Chem adjoint to enable the calculation of sensitivities that include stratospheric chemistry and interactions. This development adds 37 new tracers, 273 kinetic and photolysis reactions, an updated photolysis scheme, treatment of stratospheric aerosols, and all other features described in the original UCX paper. With this development the GEOS-Chem adjoint model is able to capture the spatial, temporal, and speciated variability in stratospheric ozone depletion processes, among other processes. We demonstrate its use by calculating 2-week sensitivities of stratospheric ozone to precursor species and show that the adjoint captures the Antarctic ozone depletion potential of active halogen species, including the chlorine activation and deactivation process. The spatial variations in the sensitivity of stratospheric ozone to NOx emissions are also described. This development expands the scope of research questions that can be addressed by allowing stratospheric interactions and feedbacks to be considered in the tropospheric sensitivity and inversion applications.
</jats:p
Global Budgets of Atmospheric Glyoxal and Methylglyoxal, and Implications for Formation of Secondary Organic Aerosols
0305 Aerosols and particles (0345, 4801, 4906) 0315 Biosphere/atmosphere interactions (0426, 1610) 0368 Troposphere: constituent transport and chemistry We construct global budgets of atmospheric glyoxal and methylglyoxal with the goal of quantifying their potential for global secondary organic aerosol (SOA) formation via irreversible uptake by aqueous aerosols and clouds. We conduct a detailed simulation of glyoxal and methylglyoxal in the GEOS-Chem global 3-D model including our best knowledge of source sink processes. Global sources of glyoxal and methylglyoxal are 45 Tg y-1 and 140 Tg y-1, respectively. Oxidation of biogenic isoprene contributes globally 47 % of glyoxal and 79 % of methylglyoxal. The second most important precursors are acetylene (glyoxal) and acetone (methylglyoxal), which have long lifetimes and thus maintain background concentrations of the dicarbonyls in the free troposphere. Atmospheric lifetimes of glyoxal and methylglyoxal in the model are 2.9 hours and 1.6 1
Recommended from our members
A 15-year record of CO emissions constrained by MOPITT CO observations
© 2017 Author(s). Long-term measurements from satellites and surface stations have demonstrated a decreasing trend of tropospheric carbon monoxide (CO) in the Northern Hemisphere over the past decade. Likely explanations for this decrease include changes in anthropogenic, fires, and/or biogenic emissions or changes in the primary chemical sink hydroxyl radical (OH). Using remotely sensed CO measurements from the Measurement of Pollution in the Troposphere (MOPITT) satellite instrument, in situ methyl chloroform (MCF) measurements from the World Data Centre for Greenhouse Gases (WDCGG) and the adjoint of the GEOS-Chem model, we estimate the change in global CO emissions from 2001 to 2015. We show that the loss rate of MCF varied by 0.2% in the past 15 years, indicating that changes in global OH distributions do not explain the recent decrease in CO. Our two-step inversion approach for estimating CO emissions is intended to mitigate the effect of bias errors in the MOPITT data as well as model errors in transport and chemistry, which are the primary factors contributing to the uncertainties when quantifying CO emissions using these remotely sensed data. Our results confirm that the decreasing trend of tropospheric CO in the Northern Hemisphere is due to decreasing CO emissions from anthropogenic and biomass burning sources. In particular, we find decreasing CO emissions from the United States and China in the past 15 years, and unchanged anthropogenic CO emissions from Europe since 2008. We find decreasing trends of biomass burning CO emissions from boreal North America, boreal Asia and South America, but little change over Africa. In contrast to prior results, we find that a positive trend in CO emissions is likely for India and southeast Asia
Recommended from our members
Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change
The sensitivity of secondary organic aerosol (SOA) concentration to changes in climate and emissions is investigated using a coupled global atmosphere-land model driven by the year 2100 IPCC A1B scenario predictions. The Community Atmosphere Model (CAM3) is updated with recent laboratory determined yields for SOA formation from monoterpene oxidation, isoprene photooxidation and aromatic photooxidation. Biogenic emissions of isoprene and monoterpenes are simulated interactively using the Model of Emissions of Gases and Aerosols (MEGAN2) within the Community Land Model (CLM3). The global mean SOA burden is predicted to increase by 36% in 2100, primarily the result of rising biogenic and anthropogenic emissions which independently increase the burden by 26% and 7%. The later includes enhanced biogenic SOA formation due to increased emissions of primary organic aerosol (5-25% increases in surface SOA concentrations in 2100). Climate change alone (via temperature, removal rates, and oxidative capacity) does not change the global mean SOA production, but the global burden increases by 6%. The global burden of anthropogenic SOA experiences proportionally more growth than biogenic; SOA in 2100 from the net effect of climate and emissions (67% increase predicted). Projected anthropogenic land use change for 2100 (A2) is predicted to reduce the global SOA burden by 14%, largely the result of cropland expansion. South America is the largest global source region for SOA in the present day and 2100, but Asia experiences the largest relative growth in SOA production by 2100 because of the large predicted increases in Asian anthropogenic aromatic emissions. The projected decrease in global sulfur emissions implies that SOA will contribute a progressively larger fraction of the global aerosol burden. Copyright 2008 by the American Geophysical Union
Long-term observational constraints of organic aerosol dependence on inorganic species in the southeast US
Organic aerosol (OA), with a large biogenic fraction in the summertime southeast US, adversely impacts air quality and human health. Stringent air quality controls have recently reduced anthropogenic pollutants including sulfate, whose impact on OA remains unclear. Three filter measurement networks provide long-term constraints on the sensitivity of OA to changes in inorganic species, including sulfate and ammonia. The 2000–2013 summertime OA decreases by 1.7 % yr^{−1}–1.9 % yr^{−1} with little month-to-month variability, while sulfate declines rapidly with significant monthly difference in the early 2000s. In contrast, modeled OA from a chemical-transport model (GEOS-Chem) decreases by 4.9 % yr^{−1} with much larger monthly variability, largely due to the predominant role of acid-catalyzed reactive uptake of epoxydiols (IEPOX) onto sulfate. The overestimated modeled OA dependence on sulfate can be improved by implementing a coating effect and assuming constant aerosol acidity, suggesting the needs to revisit IEPOX reactive uptake in current models. Our work highlights the importance of secondary OA formation pathways that are weakly dependent on inorganic aerosol in a region that is heavily influenced by both biogenic and anthropogenic emissions
Recommended from our members
Unexpected slowdown of US pollutant emission reduction in the past decade
© 2018 National Academy of Sciences. All Rights Reserved. Ground and satellite observations show that air pollution regulations in the United States (US) have resulted in substantial reductions in emissions and corresponding improvements in air quality over the last several decades. However, large uncertainties remain in evaluating how recent regulations affect different emission sectors and pollutant trends. Here we show a significant slowdown in decreasing US emissions of nitrogen oxides (NOx) and carbon monoxide (CO) for 2011–2015 using satellite and surface measurements. This observed slowdown in emission reductions is significantly different from the trend expected using US Environmental Protection Agency (EPA) bottom-up inventories and impedes compliance with local and federal agency air-quality goals. We find that the difference between observations and EPA’s NOxemission estimates could be explained by: (i) growing relative contributions of industrial, area, and off-road sources, (ii) decreasing relative contributions of on-road gasoline, and (iii) slower than expected decreases in on-road diesel emissions
Kokusai saiban kankatsu genin no shucho to rissho
© 2018 National Academy of Sciences. All Rights Reserved. Ground and satellite observations show that air pollution regulations in the United States (US) have resulted in substantial reductions in emissions and corresponding improvements in air quality over the last several decades. However, large uncertainties remain in evaluating how recent regulations affect different emission sectors and pollutant trends. Here we show a significant slowdown in decreasing US emissions of nitrogen oxides (NOx) and carbon monoxide (CO) for 2011–2015 using satellite and surface measurements. This observed slowdown in emission reductions is significantly different from the trend expected using US Environmental Protection Agency (EPA) bottom-up inventories and impedes compliance with local and federal agency air-quality goals. We find that the difference between observations and EPA’s NOxemission estimates could be explained by: (i) growing relative contributions of industrial, area, and off-road sources, (ii) decreasing relative contributions of on-road gasoline, and (iii) slower than expected decreases in on-road diesel emissions