87 research outputs found

    The Minimal Scale Invariant Extension of the Standard Model

    Full text link
    We perform a systematic analysis of an extension of the Standard Model that includes a complex singlet scalar field and is scale invariant at the tree level. We call such a model the Minimal Scale Invariant extension of the Standard Model (MSISM). The tree-level scale invariance of the model is explicitly broken by quantum corrections, which can trigger electroweak symmetry breaking and potentially provide a mechanism for solving the gauge hierarchy problem. Even though the scale invariant Standard Model is not a realistic scenario, the addition of a complex singlet scalar field may result in a perturbative and phenomenologically viable theory. We present a complete classification of the flat directions which may occur in the classical scalar potential of the MSISM. After calculating the one-loop effective potential of the MSISM, we investigate a number of representative scenarios and determine their scalar boson mass spectra, as well as their perturbatively allowed parameter space compatible with electroweak precision data. We discuss the phenomenological implications of these scenarios, in particular, whether they realize explicit or spontaneous CP violation, neutrino masses or provide dark matter candidates. In particular, we find a new minimal scale-invariant model of maximal spontaneous CP violation which can stay perturbative up to Planck-mass energy scales, without introducing an unnaturally large hierarchy in the scalar-potential couplings.Comment: 71 pages, 34 eps figures, numerical error corrected, clarifying comments adde

    Antigen-Specific B Memory Cell Responses to Plasmodium falciparum Malaria Antigens and Schistosoma haematobium Antigens in Co-Infected Malian Children

    Get PDF
    Polyparasitism is common in the developing world. We have previously demonstrated that schistosomiasis-positive (SP) Malian children have age-dependent protection from malaria compared to matched schistosomiasis-negative (SN) children. Evidence of durable immunologic memory to malaria antigens is conflicting, particularly in young children and the effect of concomitant schistomiasis upon acquisition of memory is unknown. We examined antigen-specific B memory cell (MBC) frequencies (expressed as percentage of total number of IgG-secreting cells) in 84 Malian children aged 4–14 to malaria blood-stage antigens, apical membrane antigen 1 (AMA-1) and merozoite surface protein 1 (MSP-1) and to schistosomal antigens, Soluble Worm Antigenic Preparation (SWAP) and Schistosoma Egg Antigen (SEA), at a time point during the malaria transmission season and a follow-up dry season visit. We demonstrate, for the first time, MBC responses to S. haematobium antigens in Malian children with urinary egg excretion and provide evidence of seasonal acquisition of immunologic memory, age-associated differences in MBC acquisition, and correlation with circulating S. haematobium antibody. Moreover, the presence of a parasitic co-infection resulted in older children, aged 9–14 years, with underlying S. haematobium infection having significantly more MBC response to malaria antigens (AMA1 and MSP1) than their age-matched SN counterparts. We conclude that detectable MBC response can be measured against both malaria and schistosomal antigens and that the presence of S. haematobium may be associated with enhanced MBC induction in an age-specific manner

    Characterization of highly frequent epitope-specific CD45RA(+)/CCR7(+/- )T lymphocyte responses against p53-binding domains of the human polyomavirus BK large tumor antigen in HLA-A*0201+ BKV-seropositive donors

    Get PDF
    Human polyomavirus BK (BKV) has been implicated in oncogenic transformation. Its ability to replicate is determined by the binding of its large tumor antigen (LTag) to products of tumor-suppressor genes regulating cell cycle, as specifically p53. We investigated CD8+ T immune responses to BKV LTag portions involved in p53 binding in HLA-A*0201+ BKV LTag experienced individuals. Peptides selected from either p53-binding region (LTag(351–450 )and LTag(533–626)) by current algorithms and capacity to bind HLA-A*0201 molecule were used to stimulate CD8+ T responses, as assessed by IFN-γ gene expression ex vivo and detected by cytotoxicity assays following in vitro culture. We observed epitope-specific immune responses in all HLA-A*0201+ BKV LTag experienced individuals tested. At least one epitope, LTag(579–587); LLLIWFRPV, was naturally processed in non professional antigen presenting cells and induced cytotoxic responses with CTL precursor frequencies in the order of 1/20'000. Antigen specific CD8+ T cells were only detectable in the CD45RA+ subset, in both CCR7+ and CCR7- subpopulations. These data indicate that widespread cellular immune responses against epitopes within BKV LTag-p53 binding regions exist and question their roles in immunosurveillance against tumors possibly associated with BKV infection

    Single-neuron dynamics in human focal epilepsy

    Get PDF
    Epileptic seizures are traditionally characterized as the ultimate expression of monolithic, hypersynchronous neuronal activity arising from unbalanced runaway excitation. Here we report the first examination of spike train patterns in large ensembles of single neurons during seizures in persons with epilepsy. Contrary to the traditional view, neuronal spiking activity during seizure initiation and spread was highly heterogeneous, not hypersynchronous, suggesting complex interactions among different neuronal groups even at the spatial scale of small cortical patches. In contrast to earlier stages, seizure termination is a nearly homogenous phenomenon followed by an almost complete cessation of spiking across recorded neuronal ensembles. Notably, even neurons outside the region of seizure onset showed significant changes in activity minutes before the seizure. These findings suggest a revision of current thinking about seizure mechanisms and point to the possibility of seizure prevention based on spiking activity in neocortical neurons

    Over-Expression of PDGFR-β Promotes PDGF-Induced Proliferation, Migration, and Angiogenesis of EPCs through PI3K/Akt Signaling Pathway

    Get PDF
    The proliferation, migration, and angiogenesis of endothelial progenitor cells (EPCs) play critical roles in postnatal neovascularization and re-endothelialization following vascular injury. Here we evaluated whether the over-expression of platelet-derived growth factor receptor-β (PDGFR-β) can enhance the PDGF-BB-stimulated biological functions of EPCs through the PDGFR-β/phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. We first confirmed the expression of endogenous PDGFR-β and its plasma membrane localization in spleen-derived EPCs. We then demonstrated that the PDGFR-β over-expression in EPCs enhanced the PDGF-BB-induced proliferation, migration, and angiogenesis of EPCs. Using AG1295 (a PDGFR kinase inhibitor), LY294002 (a PI3K inhibitor), and sc-221226 (an Akt inhibitor), we further showed that the PI3K/Akt signaling pathway participates in the PDGF-BB-induced proliferation, migration, and angiogenesis of EPCs. In addition, the PI3K/Akt signaling pathway is required for PDGFR-β over-expression to enhance these PDGF-BB-induced phenotypes

    Longevity and Composition of Cellular Immune Responses Following Experimental Plasmodium falciparum Malaria Infection in Humans

    Get PDF
    Cellular responses to Plasmodium falciparum parasites, in particular interferon-gamma (IFNγ) production, play an important role in anti-malarial immunity. However, clinical immunity to malaria develops slowly amongst naturally exposed populations, the dynamics of cellular responses in relation to exposure are difficult to study and data about the persistence of such responses are controversial. Here we assess the longevity and composition of cellular immune responses following experimental malaria infection in human volunteers. We conducted a longitudinal study of cellular immunological responses to sporozoites (PfSpz) and asexual blood-stage (PfRBC) malaria parasites in naïve human volunteers undergoing single (n = 5) or multiple (n = 10) experimental P. falciparum infections under highly controlled conditions. IFNγ and interleukin-2 (IL-2) responses following in vitro re-stimulation were measured by flow-cytometry prior to, during and more than one year post infection. We show that cellular responses to both PfSpz and PfRBC are induced and remain almost undiminished up to 14 months after even a single malaria episode. Remarkably, not only ‘adaptive’ but also ‘innate’ lymphocyte subsets contribute to the increased IFNγ response, including αβT cells, γδT cells and NK cells. Furthermore, results from depletion and autologous recombination experiments of lymphocyte subsets suggest that immunological memory for PfRBC is carried within both the αβT cells and γδT compartments. Indeed, the majority of cytokine producing T lymphocytes express an CD45RO+ CD62L- effector memory (EM) phenotype both early and late post infection. Finally, we demonstrate that malaria infection induces and maintains polyfunctional (IFNγ+IL-2+) EM responses against both PfRBC and PfSpz, previously found to be associated with protection. These data demonstrate that cellular responses can be readily induced and are long-lived following infection with P. falciparum, with a persisting contribution by not only adaptive but also (semi-)innate lymphocyte subsets. The implications hereof are positive for malaria vaccine development, but focus attention on those factors potentially inhibiting such responses in the field
    • …
    corecore