90 research outputs found
On the interplay between sedimentation and phase separation phenomena in two-dimensional colloidal fluids
Colloidal particles that are confined to an interface effectively form a
two-dimensional fluid. We examine the dynamics of such colloids when they are
subject to a constant external force, which drives them in a particular
direction over the surface. Such a situation occurs, for example, for colloidal
particles that have settled to the bottom of their container, when the
container is tilted at an angle, so that they `sediment' to the lower edge of
the surface. We focus in particular on the case when there are attractive
forces between the colloids which causes them to phase separate into regions of
high density and low density and we study the influence of this phase
separation on the sedimentation process. We model the colloids as Brownian
particles and use both Brownian dynamics computer simulations and dynamical
density functional theory (DDFT) to obtain the time evolution of the ensemble
average one-body density profiles of the colloids. We consider situations where
the external potential varies only in one direction so that the ensemble
average density profiles vary only in this direction. We solve the DDFT in
one-dimension, by assuming that the density profile only varies in one
direction. However, we also solve the DDFT in two-dimensions, allowing the
fluid density profile to vary in both the - and -directions. We find that
in certain situations the two-dimensional DDFT is clearly superior to its
one-dimensional counterpart when compared with the simulations and we discuss
this issue.Comment: 17 pages, 10 figures, submitted to Molecular Physic
Measuring every particle's size from three-dimensional imaging experiments
Often experimentalists study colloidal suspensions that are nominally
monodisperse. In reality these samples have a polydispersity of 4-10%. At the
level of an individual particle, the consequences of this polydispersity are
unknown as it is difficult to measure an individual particle size from
microscopy. We propose a general method to estimate individual particle radii
within a moderately concentrated colloidal suspension observed with confocal
microscopy. We confirm the validity of our method by numerical simulations of
four major systems: random close packing, colloidal gels, nominally
monodisperse dense samples, and nominally binary dense samples. We then apply
our method to experimental data, and demonstrate the utility of this method
with results from four case studies. In the first, we demonstrate that we can
recover the full particle size distribution {\it in situ}. In the second, we
show that accounting for particle size leads to more accurate structural
information in a random close packed sample. In the third, we show that crystal
nucleation occurs in locally monodisperse regions. In the fourth, we show that
particle mobility in a dense sample is correlated to the local volume fraction.Comment: 7 pages, 5 figure
Particle tracking for polydisperse sedimenting droplets in phase separation
When a binary fluid demixes under a slow temperature ramp, nucleation,
coarsening and sedimentation of droplets lead to an oscillatory evolution of
the phase separating system. The advection of the sedimenting droplets is found
to be chaotic. The flow is driven by density differences between the two
phases. Here, we show how image processing can be combined with particle
tracking to resolve droplet size and velocity simultaneously. Droplets are used
as tracer particles, and the sedimentation velocity is determined. Taking these
effects into account, droplets with radii in the range of 4 -- 40 micrometers
are detected and tracked. Based on this data we resolve the oscillations in the
droplet size distribution which are coupled to the convective flow.Comment: 13 pages; 16 figures including 3 photographs and 3 false-color plot
Reconfigurable self-assembly through chiral control of interfacial tension
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 481 (2012): 348–351, doi:10.1038/nature10769.From determining optical properties of simple molecular crystals to establishing preferred handedness in highly complex vertebrates, molecular chirality profoundly influences the structural, mechanical, and optical properties of both synthetic and biological matter at macroscopic lengthscales1,2. In soft materials such as amphiphilic lipids and liquid crystals, the competition between local chiral interactions and global constraints imposed by the geometry of the self-assembled structures leads to frustration and the assembly of unique materials3-6. An example of particular interest is smectic liquid crystals, where the 2D layered geometry cannot support twist, expelling chirality to the edges in a manner analogous to the expulsion of a magnetic field from superconductors7-10. Here, we demonstrate a previously unexplored consequence of this geometric frustration which leads to a new design principle for the assembly of chiral molecules. Using a model system of colloidal membranes11, we show that molecular chirality can control the interfacial tension, an important property of multi-component mixtures. This finding suggests an analogy between chiral twist which is expelled to the edge of 2D membranes, and amphiphilic surfactants which are expelled to oil-water interfaces12. Similar to surfactants, chiral control of interfacial tension drives the assembly of myriad polymorphic assemblages such as twisted ribbons with linear and circular topologies, starfish membranes, and double and triple helices. Tuning molecular chirality in situ enables dynamical control of line tension that powers polymorphic transitions between various chiral structures. These findings outline a general strategy for the assembly of reconfigurable chiral materials which can easily be moved, stretched, attached to one another, and transformed between multiple conformational states, thus enabling precise assembly and nano-sculpting of highly dynamical and designable materials with complex topologies.This work was supported by the National Science Foundation (NSF-MRSEC-0820492, NSF-DMR-0955776, NSF-MRI 0923057) and Petroleum Research Fund (ACS-PRF 50558-DNI7).2012-07-0
Size limits the formation of liquid jets during bubble bursting
A bubble reaching an air–liquid interface usually bursts and forms a liquid jet. Jetting is relevant to climate and health as it is a source of aerosol droplets from breaking waves. Jetting has been observed for large bubbles with radii of R≫100 μm. However, few studies have been devoted to small bubbles (R<100 μm) despite the entrainment of a large number of such bubbles in sea water. Here we show that jet formation is inhibited by bubble size; a jet is not formed during bursting for bubbles smaller than a critical size. Using ultrafast X-ray and optical imaging methods, we build a phase diagram for jetting and the absence of jetting. Our results demonstrate that jetting in bubble bursting is analogous to pinching-off in liquid coalescence. The coalescence mechanism for bubble bursting may be useful in preventing jet formation in industry and improving climate models concerning aerosol production
Probing the critical behavior of colloidal interfaces by gravity
We present a study of the interface between fluid-fluid phase separated colloid-polymer mixtures of identical composition but with varying suspension height. The significance of the sedimentation gradient present in the suspension is controlled by the ratio between the suspension height and the gravitational length of the colloids. We demonstrate that increasing the suspension height, and thus the importance of gravity leads to a systematic roughening of the gas-liquid interface as if one approaches the critical point. By carefully tuning the system height, the suspension can be brought arbitrarily close to criticality, irrespective of the overall composition of colloid and polymer. Our findings are based on measurements of the interfacial tension and capillary wave properties and supported by predictions from a simple density functional theory. © 2011 The Royal Society of Chemistry
Model-free measurement of the pair potential in colloidal fluids using optical microscopy
We report a straightforward, model-free approach for measuring pair potentials from particle-coordinate data, based on enforcing consistency between the pair distribution function measured separately by the distance-histogram and test-particle insertion routes. We demonstrate the method’s accuracy and versatility in simulations of simple fluids, before applying it to an experimental system composed of superparamagnetic colloidal particles. The method will enable experimental investigations into many-body interactions and allow for effective coarse graining of interactions from simulations
Sedimentation-diffusion dynamics in colloid-polymer mixtures
We show experimentally how a phase separated colloid-polymer mixture finds its sedimentation-diffusion equilibrium after initial fluid-fluid demixing. During this equilibration process we measure key parameters of the colloidal interface by assuming local mechanical equilibrium and we inspect the behaviour of the meniscus close to a vertical wall. It turns out that the kinetic pathway associated with the sedimentation process not only strongly depends on the overall colloid and polymer concentrations but also on the height of the suspension. Beyond a certain height the system locally passes through the gas-liquid critical point, which opens new ways to study critical phenomena. © 2010 IOP Publishing Ltd and SISSA
Colloidal crystal-fluid interfaces
In this article we show that colloidal systems are excellent model systems to experimentally study crystal-fluid interfaces. Using confocal microscopy it is possible to investigate static and dynamic interfacial properties in three dimensions and on the single particle level. The combination of real-space microscopy and colloidal model systems may provide a possible route to directly access the anisotropic interfacial free energy and the kinetic growth coefficient of crystal-fluid interfaces
- …
