235 research outputs found
Selection Acts on DNA Secondary Structures to Decrease Transcriptional Mutagenesis
Single-stranded DNA is more subject to mutation than double stranded. During transcription, DNA is transiently single stranded and therefore subject to higher mutagenesis. However, if local intra-strand secondary structures are formed, some bases will be paired and therefore less sensitive to mutation than unpaired bases. Using complete genome sequences of Escherichia coli, we show that local intra-strand secondary structures can, as a consequence, be used to define an index of transcription-driven mutability. At gene level, we show that natural selection has favoured a reduced transcription-driven mutagenesis via the higher than expected frequency of occurrence of intra-strand secondary structures. Such selection is stronger in highly expressed genes and suggests a sequence-dependent way to control mutation rates and a novel form of selection affecting the evolution of synonymous mutations
Characterization of the cryptic Escherichia lineages: rapid identification and prevalence
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86967/1/j.1462-2920.2011.02519.x.pd
Small variable segments constitute a major type of diversity of bacterial genomes at the species level.
International audienceBACKGROUND: Analysis of large scale diversity in bacterial genomes has mainly focused on elements such as pathogenicity islands, or more generally, genomic islands. These comprise numerous genes and confer important phenotypes, which are present or absent depending on strains. We report that despite this widely accepted notion, most diversity at the species level is composed of much smaller DNA segments, 20 to 500 bp in size, which we call microdiversity. RESULTS: We performed a systematic analysis of the variable segments detected by multiple whole genome alignments at the DNA level on three species for which the greatest number of genomes have been sequenced: Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes. Among the numerous sites of variability, 62 to 73% were loci of microdiversity, many of which were located within genes. They contribute to phenotypic variations, as 3 to 6% of all genes harbor microdiversity, and 1 to 9% of total genes are located downstream from a microdiversity locus. Microdiversity loci are particularly abundant in genes encoding membrane proteins. In-depth analysis of the E. coli alignments shows that most of the diversity does not correspond to known mobile or repeated elements, and it is likely that they were generated by illegitimate recombination. An intriguing class of microdiversity includes small blocks of highly diverged sequences, whose origin is discussed. CONCLUSIONS: This analysis uncovers the importance of this small-sized genome diversity, which we expect to be present in a wide range of bacteria, and possibly also in many eukaryotic genomes
aes, the gene encoding the esterase B in Escherichia coli, is a powerful phylogenetic marker of the species
<p>Abstract</p> <p>Background</p> <p>Previous studies have established a correlation between electrophoretic polymorphism of esterase B, and virulence and phylogeny of <it>Escherichia coli</it>. Strains belonging to the phylogenetic group B2 are more frequently implicated in extraintestinal infections and include esterase B<sub>2 </sub>variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and include esterase B<sub>1 </sub>variants. We investigated esterase B as a marker of phylogeny and/or virulence, in a thorough analysis of the esterase B-encoding gene.</p> <p>Results</p> <p>We identified the gene encoding esterase B as the acetyl-esterase gene (<it>aes</it>) using gene disruption. The analysis of <it>aes </it>nucleotide sequences in a panel of 78 reference strains, including the <it>E. coli </it>reference (ECOR) strains, demonstrated that the gene is under purifying selection. The phylogenetic tree reconstructed from <it>aes </it>sequences showed a strong correlation with the species phylogenetic history, based on multi-locus sequence typing using six housekeeping genes. The unambiguous distinction between variants B<sub>1 </sub>and B<sub>2 </sub>by electrophoresis was consistent with Aes amino-acid sequence analysis and protein modelling, which showed that substituted amino acids in the two esterase B variants occurred mostly at different sites on the protein surface. Studies in an experimental mouse model of septicaemia using mutant strains did not reveal a direct link between <it>aes </it>and extraintestinal virulence. Moreover, we did not find any genes in the chromosomal region of <it>aes </it>to be associated with virulence.</p> <p>Conclusion</p> <p>Our findings suggest that <it>aes </it>does not play a direct role in the virulence of <it>E. coli </it>extraintestinal infection. However, this gene acts as a powerful marker of phylogeny, illustrating the extensive divergence of B2 phylogenetic group strains from the rest of the species.</p
Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study
The genus Escherichia is composed of several species and cryptic clades, including E. coli, which behaves as a vertebrate gut commensal, but also as an opportunistic pathogen involved in both diarrheic and extra-intestinal diseases. To characterize the genetic determinants of extra-intestinal virulence within the genus, we carried out an unbiased genome-wide association study (GWAS) on 370 commensal, pathogenic and environmental strains representative of the Escherichia genus phylogenetic diversity and including E. albertii (n = 7), E. fergusonii (n = 5), Escherichia clades (n = 32) and E. coli (n = 326), tested in a mouse model of sepsis. We found that the presence of the high-pathogenicity island (HPI), a similar to 35 kbp gene island encoding the yersiniabactin siderophore, is highly associated with death in mice, surpassing other associated genetic factors also related to iron uptake, such as the aerobactin and the sitABCD operons. We confirmed the association in vivo by deleting key genes of the HPI in E. coli strains in two phylogenetic backgrounds. We then searched for correlations between virulence, iron capture systems and in vitro growth in a subset of E. coli strains (N = 186) previously phenotyped across growth conditions, including antibiotics and other chemical and physical stressors. We found that virulence and iron capture systems are positively correlated with growth in the presence of numerous antibiotics, probably due to co-selection of virulence and resistance. We also found negative correlations between virulence, iron uptake systems and growth in the presence of specific antibiotics (i.e. cefsulodin and tobramycin), which hints at potential "collateral sensitivities" associated with intrinsic virulence. This study points to the major role of iron capture systems in the extra-intestinal virulence of the genus Escherichia. Author summary Bacterial isolates belonging to the genus Escherichia can be human commensals but also opportunistic pathogens, with the ability to cause extra-intestinal infection. There is therefore the need to identify the genetic elements that favour extra-intestinal virulence, so that virulent bacterial isolates can be identified through genome analysis and potential treatment strategies be developed. To reduce the influence of host variability on virulence, we have used a mouse model of sepsis to characterize the virulence of 370 strains belonging to the genus Escherichia, for which whole genome sequences were also available. We have used a statistical approach called Genome-Wide Association Study (GWAS) to show how the presence of genes that encode for iron scavenging are significantly associated with the propensity of a bacterial isolate to cause extra-intestinal infections. Taking advantage of previously generated growth data on a subset of the strains and its correlation to virulence we generated hypothesis on the relationship between iron scavenging and growth in the presence of various antimicrobials, which could have implications for developing new treatment strategies
Small Intestine Early Innate Immunity Response during Intestinal Colonization by Escherichia coli Depends on Its Extra-Intestinal Virulence Status
International audienceUropathogenic Escherichia coli (UPEC) strains live as commensals in the digestive tract of the host, but they can also initiate urinary tract infections. The aim of this work was to determine how a host detects the presence of a new UPEC strain in the digestive tract. Mice were orally challenged with UPEC strains 536 and CFT073, non-pathogenic strain K12 MG1655, and ΔPAI-536, an isogenic mutant of strain 536 lacking all 7 pathogenicity islands whose virulence is drastically attenuated. Intestinal colonization was measured, and cytokine expression was determined in various organs recovered from mice after oral challenge. UPEC strain 536 efficiently colonized the mouse digestive tract, and prior Enterobacteriaceae colonization was found to impact strain 536 colonization efficiency. An innate immune response, detected as the production of TNFα, IL-6 and IL-10 cytokines, was activated in the ileum 48 hours after oral challenge with strain 536, and returned to baseline within 8 days, without a drop in fecal pathogen load. Although inflammation was detected in the ileum, histology was normal at the time of cytokine peak. Comparison of cytokine secretion 48h after oral gavage with E. coli strain 536, CFT073, MG1655 or ΔPAI-536 showed that inflammation was more pronounced with UPECs than with non-pathogenic or attenuated strains. Pathogenicity islands also seemed to be involved in host detection, as IL-6 intestinal secretion was increased after administration of E. coli strain 536, but not after administration of ΔPAI-536. In conclusion, UPEC colonization of the mouse digestive tract activates acute phase inflammatory cytokine secretion but does not trigger any pathological changes, illustrating the opportunistic nature of UPECs. This digestive tract colonization model will be useful for studying the factors controlling the switch from commensalism to pathogenicity
Changes in urine composition after trauma facilitate bacterial growth.
International audienceUNLABELLED: ABSTRACT: BACKGROUND: Critically ill patients including trauma patients are at high risk of urinary tract infection (UTI). The composition of urine in trauma patients may be modified due to inflammation, systemic stress, rhabdomyolysis, life support treatment and/or urinary catheter insertion. METHODS: Prospective, single-centre, observational study conducted in patients with severe trauma and without a history of UTIs or recent antibiotic treatment. The 24-hour urine samples were collected on the first and the fifth days and the growth of Escherichia coli in urine from patients and healthy volunteers was compared. Biochemical and hormonal modifications in urine that could potentially influence bacterial growth were explored. RESULTS: Growth of E. coli in urine from trauma patients was significantly higher on days 1 and 5 than in urine of healthy volunteers. Several significant modifications of urine composition could explain these findings. On days 1 and 5, trauma patients had an increase in glycosuria, in urine iron concentration, and in the concentrations of several amino acids compared to healthy volunteers. On day 1, the urinary osmotic pressure was significantly lower than for healthy volunteers. CONCLUSION: We showed that urine of trauma patients facilitated growth of E. coli when compared to urine from healthy volunteers. This effect was present in the first 24 hours and until at least the fifth day after trauma. This phenomenon may be involved in the pathophysiology of UTIs in trauma patients. Further studies are required to define the exact causes of such modifications
Effect of human vicinity on antimicrobial resistance and integrons in animal faecal Escherichia coli”.
Objectives: To determine the level of antimicrobial resistance and the occurrence of class 1, 2 and 3 integrons in faecal Escherichia coli from several animal populations variously exposed to human contact. Methods: A collection of 341 faecal E. coli isolates was constituted from several animal populations subject to various degrees of exposure to humans: 18 animals never exposed to humans (living in the Antarctic or Gabon), 71 wild animals living in a low human density area (mountainous region of the Pyrenees, France), 61 wild animals living in a higher human density area (Fontainebleau forest near Paris, France), and 128 extensively reared farm animals and 42 pet dogs, both living in the Pyrenees. Resistance to antimicrobial agents was determined by the method of disc diffusion and quantified using the resistance score of BE Murray, JJ Mathewson, HL DuPont, CD Ericsson and RR Reves (Antimicrobial Agents and Chemotherapy 1990; 34: 515-18). Integrons were characterized by triplex realtime PCR and sequencing. The absence of epidemiologic clones was confirmed by PCR-based methods. Results: A gradient of resistance ranging from absence to high prevalence (resistance score of 18.7%) and a gradual increase in the prevalence of class 1 integrons (from 0% to 16%), both correlated with the increase in exposure to humans, were observed. In wild animals with little contact with humans, resistance, when present, was not mediated by integrons. Conclusions: Our findings firmly establish that the current prevalence of antimicrobial resistance found in animal faecal bacteria, as well as the prevalence of integrons, is clearly anthropogenic. The presence of integrons may constitute an adaptive process to environments whose antimicrobial pressure exceeds a certain threshold
Differential antibacterial activity against Pseudomonas aeruginosa by carbon monoxide-releasing molecules.
International audienceAIMS: Carbon monoxide (CO) delivered in a controlled manner to cells and organisms mediates a variety of pharmacological effects to the extent that CO-releasing molecules (CO-RMs) are being developed for therapeutic purposes. Recently, ruthenium-based CO-RMs have been shown to posses important bactericidal activity. Here we assessed the effect of fast CO releasers containing ruthenium (Ru(CO)(3)Cl(glycinate) [CORM-3] and tricarbonyldichlororuthenium(II) dimer [CORM-2]) and a novel slow manganese-based CO releaser ([Me(4)N][Mn(CO)(4)(thioacetate)(2)] [CORM-371]) on O(2) consumption and growth of Pseudomonas aeruginosa (PAO1). We then compared these effects with the action elicited by sodium boranocarbonate (CORM-A1), which lacks a transition metal but liberates CO with a rate similar to CORM-371. RESULTS: CORM-2, CORM-3, and, to a lesser extent, CORM-371 exerted a significant bactericidal effect and decreased O(2) consumption in PAO1 in vitro. The effect appeared to be independent of reactive oxygen species production, but in the case of metal-containing compounds it was prevented by the thiol donor N-acetylcysteine. In contrast, CORM-A1 was bacteriostatic rather than bactericidal in vitro eliciting only a moderate and transient decrease in O(2) consumption. INNOVATION: None of the tested CO-RMs was toxic to murine macrophages or human fibroblasts at the concentration impairing PA01 growth but only ruthenium-containing CO-RMs showed potential therapeutic properties by increasing the survival of mice infected with PA01. CONCLUSION: CO carriers inhibit bacterial growth and O(2) consumption in vitro, but transition metal carbonyls appear more powerful than compounds spontaneously liberating CO. The nature of the metal in CO-RMs also modulates the anti-bacterial effect, with ruthenium-based CO-RMs being efficacious both in vitro and in vivo
- …