136 research outputs found

    The Integrin Antagonist Cilengitide Activates αVβ3, Disrupts VE-Cadherin Localization at Cell Junctions and Enhances Permeability in Endothelial Cells

    Get PDF
    Cilengitide is a high-affinity cyclic pentapeptdic αV integrin antagonist previously reported to suppress angiogenesis by inducing anoikis of endothelial cells adhering through αVβ3/αVβ5 integrins. Angiogenic endothelial cells express multiple integrins, in particular those of the β1 family, and little is known on the effect of cilengitide on endothelial cells expressing αVβ3 but adhering through β1 integrins. Through morphological, biochemical, pharmacological and functional approaches we investigated the effect of cilengitide on αVβ3-expressing human umbilical vein endothelial cells (HUVEC) cultured on the β1 ligands fibronectin and collagen I. We show that cilengitide activated cell surface αVβ3, stimulated phosphorylation of FAK (Y397 and Y576/577), Src (S418) and VE-cadherin (Y658 and Y731), redistributed αVβ3 at the cell periphery, caused disappearance of VE-cadherin from cellular junctions, increased the permeability of HUVEC monolayers and detached HUVEC adhering on low-density β1 integrin ligands. Pharmacological inhibition of Src kinase activity fully prevented cilengitide-induced phosphorylation of Src, FAK and VE-cadherin, and redistribution of αVβ3 and VE-cadherin and partially prevented increased permeability, but did not prevent HUVEC detachment from low-density matrices. Taken together, these observations reveal a previously unreported effect of cilengitide on endothelial cells namely its ability to elicit signaling events disrupting VE-cadherin localization at cellular contacts and to increase endothelial monolayer permeability. These effects are potentially relevant to the clinical use of cilengitide as anticancer agent

    The relation between endothelial dependent flow mediated dilation of the brachial artery and coronary collateral development – a cross sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelial dysfunction is thought to be a potential mechanism for the decreased presence of coronary collaterals. The aim of the study was to investigate the association between systemic endothelial function and the extent of coronary collaterals.</p> <p>Methods</p> <p>We investigated the association between endothelial function assessed via flow mediated dilation (FMD) of the brachial artery following reactive hyperemia and the extent of coronary collaterals graded from 0 to 3 according to Rentrop classification in a cohort of 171 consecutive patients who had high grade coronary stenosis or occlusion on their angiograms.</p> <p>Results</p> <p>Mean age was 61 years and 75% were males. Of the 171 patients 88 (51%) had well developed collaterals (grades of 2 or 3) whereas 83 (49%) had impaired collateral development (grades of 0 or 1). Patients with poor collaterals were significantly more likely to have diabetes (<it>p </it>= 0.001), but less likely to have used statins (<it>p </it>= 0.083). FMD measurements were not significantly different among good and poor collateral groups (11.5 ± 5.6 vs. 10.4 ± 6.2% respectively, <it>p </it>= 0.214). Nitroglycerin mediated dilation was also similar (13.4 ± 5.9 vs. 12.8 ± 6.5%, <it>p </it>= 0.521).</p> <p>Conclusion</p> <p>No significant association was found between the extent of angiographically visible coronary collaterals and systemic endothelial function assessed by FMD of the brachial artery.</p

    Rapid semi-automated quantitative multiplex tandem PCR (MT-PCR) assays for the differential diagnosis of influenza-like illness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza A, including avian influenza, is a major public health threat in developed and developing countries. Rapid and accurate detection is a key component of strategies to contain spread of infection, and the efficient diagnosis of influenza-like-illness is essential to protect health infrastructure in the event of a major influenza outbreak.</p> <p>Methods</p> <p>We developed a multiplexed PCR (MT-PCR) assay for the simultaneous diagnosis of respiratory viruses causing influenza-like illness, including the specific recognition of influenza A haemagglutinin subtypes H1, H3, and H5. We tested several hundred clinical specimens in two diagnostic reference laboratories and compared the results with standard techniques.</p> <p>Results</p> <p>The sensitivity and specificity of these assays was higher than individual assays based on direct antigen detection and standard PCR against a range of control templates and in several hundred clinical specimens. The MT-PCR assays provided differential diagnoses as well as potentially useful quantitation of virus in clinical samples.</p> <p>Conclusions</p> <p>MT-PCR is a potentially powerful tool for the differential diagnosis of influenza-like illness in the clinical diagnostic laboratory.</p

    Trihydrophobin 1 Phosphorylation by c-Src Regulates MAPK/ERK Signaling and Cell Migration

    Get PDF
    c-Src activates Ras-MAPK/ERK signaling pathway and regulates cell migration, while trihydrophobin 1 (TH1) inhibits MAPK/ERK activation and cell migration through interaction with A-Raf and PAK1 and inhibiting their kinase activities. Here we show that c-Src interacts with TH1 by GST-pull down assay, coimmunoprecipitation and confocal microscopy assay. The interaction leads to phosphorylation of TH1 at Tyr-6 in vivo and in vitro. Phosphorylation of TH1 decreases its association with A-Raf and PAK1. Further study reveals that Tyr-6 phosphorylation of TH1 reduces its inhibition on MAPK/ERK signaling, enhances c-Src mediated cell migration. Moreover, induced tyrosine phosphorylation of TH1 has been found by EGF and estrogen treatments. Taken together, our findings demonstrate a novel mechanism for the comprehensive regulation of Ras/Raf/MEK/ERK signaling and cell migration involving tyrosine phosphorylation of TH1 by c-Src

    Engineered allosteric activation of kinases in living cells

    Get PDF
    Studies of cellular and tissue dynamics benefit greatly from tools that can control protein activity with specificity and precise timing in living systems. We describe here a new approach to confer allosteric regulation specifically on the catalytic activity of kinases. A highly conserved portion of the kinase catalytic domain is modified with a small protein insert that inactivates catalytic activity, but does not affect other protein interactions. Catalytic activity is restored by addition of rapamycin or non-immunosuppresive analogs (Fig. 1A). We demonstrate the approach by specifically activating focal adhesion kinase (FAK) within minutes in living cells, thereby demonstrating a novel role for FAK in regulation of membrane dynamics. Molecular modeling and mutagenesis indicate that the protein insert reduces activity by increasing the flexibility of the catalytic domain. Drug binding restores activity by increasing rigidity. Successful regulation of Src and p38 suggest that modification of this highly conserved site will be applicable to other kinases

    Avant-garde and experimental music

    Full text link

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore