2,296 research outputs found

    Preliminary genetic analyses of important musculoskeletal conditions of thoroughbred racehorses in Hong Kong

    Get PDF
    A retrospective cohort study of important musculoskeletal conditions of Thoroughbred racehorses was conducted using health records generated over a 15 year period (n = 5062, 1296 sires). The prevalence of each condition in the study population was: fracture, 13%; osteoarthritis, 10%; suspensory ligament injury, 10%; and tendon injury, 19%. Linear and logistic sire and animal regression models were built to describe the binary occurrence of these musculoskeletal conditions, and to evaluate the significance of possible environmental risk factors. The heritability of each condition was estimated using residual maximum likelihood (REML). Bivariate mixed models were used to generate estimates of genetic correlations between each pair of conditions.<p></p> Heritability estimates of fracture, osteoarthritis, suspensory ligament and tendon injury were small to moderate (range: 0.01–0.20). Fracture was found to be positively genetically correlated with both osteoarthritis and suspensory ligament injury. These results suggest that there is a significant genetic component involved in the risk of the studied conditions. Due to positive genetic correlations, a reduction in prevalence of one of the correlated conditions may effect a reduction in risk of the other condition.<p></p&gt

    Spatial access to healthcare: exploring the provision of local services

    Get PDF
    This thesis creates a context for exploring the provision of local healthcare services quantitatively, with particular focus on the application of spatial analysis and the use of geographic information systems (GIS). It focuses theoretically on the intersections between: health and medical geography; GIScience and spatially integrated social science; and social justice and spatial equity, elucidating the value of space and place in understanding patient registration with, and usage of, healthcare services. The practical elements of the thesis are based on patient registration data provided by Southwark primary care trust (PCT), and Hospital Episode Statistics from the NHS Information Centre. Focussing initially on primary care, registration with GP surgeries in Southwark is considered firstly from a normative perspective, and subsequently by employing a service area delineation approach. Profiling GP surgeries in this way enables an insight into patient registration behaviours, and sheds light on the challenges of implementing an agenda of patient choice as advocated by recent NHS white papers. The perspective of inpatient and outpatient care is also considered, given the increasing import of joined up provision in primary and secondary care. The thesis considers the linkage between the two service hierarchies, investigating utilisation of secondary care by patients. The value of this thesis derives from its relevance to the reform agenda that looks likely to radically reshape the NHS, the exploitation of patient registration data at individual level, novel use of classification, and the systematic application of spatial analysis across a range of scales

    A high resolution imaging detector for TeV gamma-ray astronomy

    Get PDF
    Details are presented of an atmospheric Cherenkov telescope for use in very high energy gamma-ray astronomy which consists of a cluster of 109 close-packed photomultiplier tubes at the focus of a 10 meter optical reflector. The images of the Cherenkov flashes generated both by gamma-ray and charged cosmic-ray events are digitized and recorded. Subsequent off-line analysis of the images improves the significance of the signal to noise ratio by a factor of 10 compared with non-imaging techniques

    Next-to-leading resummation of cosmological perturbations via the Lagrangian picture: 2-loop correction in real and redshift spaces

    Full text link
    We present an improved prediction of the nonlinear perturbation theory (PT) via the Lagrangian picture, which was originally proposed by Matsubara (2008). Based on the relations between the power spectrum in standard PT and that in Lagrangian PT, we derive analytic expressions for the power spectrum in Lagrangian PT up to 2-loop order in both real and redshift spaces. Comparing the improved prediction of Lagrangian PT with NN-body simulations in real space, we find that the 2-loop corrections can extend the valid range of wave numbers where we can predict the power spectrum within 1% accuracy by a factor of 1.0 (z=0.5z=0.5), 1.3 (1), 1.6 (2) and 1.8 (3) vied with 1-loop Lagrangian PT results. On the other hand, in all redshift ranges, the higher-order corrections are shown to be less significant on the two-point correlation functions around the baryon acoustic peak, because the 1-loop Lagrangian PT is already accurate enough to explain the nonlinearity on those scales in NN-body simulations.Comment: 18pages, 4 figure

    Harmonic E/B decomposition for CMB polarization maps

    Full text link
    The full sky cosmic microwave background polarization field can be decomposed into 'electric' (E) and 'magnetic' (B) components that are signatures of distinct physical processes. We give a general construction that achieves separation of E and B modes on arbitrary sections of the sky at the expense of increasing the noise. When E modes are present on all scales the separation of all of the B signal is no longer possible: there are inevitably ambiguous modes that cannot be separated. We discuss the practicality of performing E/B decomposition on large scales with realistic non-symmetric sky-cuts, and show that separation on large scales is possible by retaining only the well supported modes. The large scale modes potentially contain a great deal of useful information, and E/B separation at the level of the map is essential for clean detection of B without confusion from cosmic variance due to the E signal. We give simple matrix manipulations for creating pure E and B maps of the large scale signal for general sky cuts. We demonstrate that the method works well in a realistic case and give estimates of the performance with data from the Planck satellite. In the appendix we discuss the simple analytic case of an azimuthally symmetric cut, and show that exact E/B separation is possible on an azimuthally symmetric cut with a finite number of non-intersecting circular cuts around foreground sources.Comment: Fixed numerical bug in tensor C_l: Planck detection probability results updated (supersedes PRD version). Sample code and additional examples available at http://cosmologist.info/polar
    corecore