611 research outputs found
Monovalent counterion distributions at highly charged water interfaces: Proton-transfer and Poisson-Boltzmann theory
Surface sensitive synchrotron-X-ray scattering studies reveal the
distributions of monovalent ions next to highly charged interfaces. A lipid
phosphate (dihexadecyl hydrogen-phosphate) was spread as a monolayer at the
air-water interface, containing CsI at various concentrations. Using anomalous
reflectivity off and at the Cs resonance, we provide, for the first
time, spatial counterion distributions (Cs) next to the negatively charged
interface over a wide range of ionic concentrations. We argue that at low salt
concentrations and for pure water the enhanced concentration of hydroniums
HO at the interface leads to proton-transfer back to the phosphate
group by a high contact-potential, whereas high salt concentrations lower the
contact-potential resulting in proton-release and increased surface
charge-density. The experimental ionic distributions are in excellent agreement
with a renormalized-surface-charge Poisson-Boltzmann theory without fitting
parameters or additional assumptions
Induced Crystallization of Polyelectrolyte-Surfactant Complexes at the Gas-Water Interface
Synchrotron-X-ray and surface tension studies of a strong polyelectrolyte
(PE) in the semi-dilute regime (~ 0.1M monomer-charges) with varying surfactant
concentrations show that minute surfactant concentrations induce the formation
of a PE-surfactant complex at the gas/solution interface. X-ray reflectivity
and grazing angle X-ray diffraction (GIXD) provide detailed information of the
top most layer, where it is found that the surfactant forms a two-dimensional
liquid-like monolayer, with a noticeable disruption of the structure of water
at the interface. With the addition of salt (NaCl) columnar-crystals with
distorted-hexagonal symmetry are formed.Comment: 4 pages, 5 eps figure
Magnetic field induced orientation of superconducting MgB crystallites determined by X-ray diffraction
X-ray diffraction studies of fine polycrystalline samples of MgB in the
superconducting state reveal that crystals orient with their \emph{c}-axis in a
plane normal to the direction of the applied magnetic field. The MgB
samples were thoroughly ground to obtain average grain size 5 - 10 m in
order to increase the population of free single crystal grains in the powder.
By monitoring Bragg reflections in a plane normal to an applied magnetic field
we find that the powder is textured with significantly stronger (\emph{0,0,l})
reflections in comparison to (\emph{h,k,0}), which remain essentially
unchanged. The orientation of the crystals with the \emph{ab}-plane parallel to
the magnetic field at all temperatures below demonstrates that the sign
of the torque under magnetic field does not alter, in disagreement with current
theoretical predictions
Bjerrum pairing correlations at charged interfaces
Electrostatic correlations play a fundamental role in aqueous solutions. In
this letter, we identify transverse and lateral correlations as two mutually
exclusive regimes. We show that the transverse regime leads to binding by
generalization of Bjerrum pair formation theory, yielding binding constants
from first-principle statistical-mechanical calculations. We compare our
theoretical predictions with experiments on charged membranes and Langmuir
monolayers and find good agreement. We contrast our approach with existing
theories in the strong-coupling limit and on charged modulated interfaces, and
discuss different scenarios that lead to charge reversal and equal-sign
attraction by macro-ions.Comment: 7 pages, 4 figure
Off-equilibrium dynamics of the two-dimensional Coulomb glass
The dynamics of the 2D Coulomb glass model is investigated by kinetic Monte
Carlo simulation. An exponential divergence of the relaxation time signals a
zero-temperature freezing transition. At low temperatures the dynamics of the
system is glassy. The local charge correlations and the response to
perturbations of the local potential show aging. The dynamics of formation of
the Coulomb gap is slow and the density of states at the Fermi level decays in
time as a power law. The relevance of these findings for recent transport
experiments in Anderson-insulating films is pointed out.Comment: 7 pages, 7 figure
Phase transitions and iron-ordered moment form factor in LaFeAsO
Elastic neutron scattering studies of an optimized LaFeAsO single crystal
reveal that upon cooling, an onset of the tetragonal (T)-to-orthorhombic (O)
structural transition occurs at K, and it exhibits a
sharp transition at K. We argue that in the
temperature range to , T and O structures may
dynamically coexist possibly due to nematic spin correlations recently proposed
for the iron pnictides, and we attribute to the formation of
long-range O domains from the finite local precursors. The antiferromagnetic
structure emerges at K, with the iron moment
direction along the O \emph{a} axis. We extract the iron magnetic form factor
and use the tabulated of Fe, Fe and Fe to
obtain a magnetic moment size of 0.8 at 9.5 K.Comment: 7 pages, 6 figures, 3 table
- …