156 research outputs found
Competing charge density waves and temperature-dependent nesting in 2H-TaSe2
Multiple charge density wave (CDW) phases in 2H-TaSe2 are investigated by
high-resolution synchrotron x-ray diffraction. In a narrow temperature range
immediately above the commensurate CDW transition, we observe a multi-q
superstructure with coexisting commensurate and incommensurate order
parameters, clearly distinct from the fully incommensurate state at higher
temperatures. This multi-q ordered phase, characterized by a temperature
hysteresis, is found both during warming and cooling, in contrast to previous
reports. In the normal state, the incommensurate superstructure reflection
gives way to a broad diffuse peak that persists nearly up to room temperature.
Its position provides a direct and accurate estimate of the Fermi surface
nesting vector, which evolves non-monotonically and approaches the commensurate
position as the temperature is increased. This behavior agrees with our recent
observations of the temperature-dependent Fermi surface in the same compound
[Phys. Rev. B 79, 125112 (2009)]
Dispersion and damping of zone-boundary magnons in the noncentrosymmetric superconductor CePt3Si
Inelastic neutron scattering (INS) is employed to study damped spin-wave
excitations in the noncentrosymmetric heavy-fermion superconductor CePt3Si
along the antiferromagnetic Brillouin-zone boundary in the low-temperature
magnetically ordered state. Measurements along the (1/2 1/2 L) and (H H 1/2-H)
reciprocal-space directions reveal deviations in the spin-wave dispersion from
the previously reported model. Broad asymmetric shape of the peaks in energy
signifies strong spin-wave damping by interactions with the particle-hole
continuum. Their energy width exhibits no evident anomalies as a function of
momentum along the (1/2 1/2 L) direction, which could be attributed to
Fermi-surface nesting effects, implying the absence of pronounced commensurate
nesting vectors at the magnetic zone boundary. In agreement with a previous
study, we find no signatures of the superconducting transition in the magnetic
excitation spectrum, such as a magnetic resonant mode or a superconducting spin
gap, either at the magnetic ordering wavevector (0 0 1/2) or at the zone
boundary. However, the low superconducting transition temperature in this
material still leaves the possibility of such features being weak and therefore
hidden below the incoherent background at energies ~0.1 meV, precluding their
detection by INS
Quantitative assessment of pinning forces and the superconducting gap in NbN thin films from complementary magnetic force microscopy and transport measurements
Epitaxial niobium-nitride thin films with a critical temperature of Tc=16K
and a thickness of 100nm were fabricated on MgO(100) substrates by pulsed laser
deposition. Low-temperature magnetic force microscopy (MFM) images of the
supercurrent vortices were measured after field cooling in a magnetic field of
3mT at various temperatures. Temperature dependence of the penetration depth
has been evaluated by a two-dimensional fitting of the vortex profiles in the
monopole-monopole model. Its subsequent fit to a single s-wave gap function
results in the superconducting gap amplitude Delta(0) = 2.9 meV = 2.1*kB*Tc, in
perfect agreement with previous reports. The pinning force has been
independently estimated from local depinning of individual vortices by lateral
forces exerted by the MFM tip and from transport measurements. A good
quantitative agreement between the two techniques shows that for low fields, B
<< Hc2, MFM is a powerful and reliable technique to probe the local variations
of the pinning landscape. We also demonstrate that the monopole model can be
successfully applied even for thin films with a thickness comparable to the
penetration depth.Comment: 6 pages, 6 figures, 2 table
Crossover from weak to strong pairing in unconventional superconductors
Superconductors are classified by their pairing mechanism and the coupling
strength, measured as the ratio of the energy gap to the critical temperature,
Tc. We present an extensive comparison of the gap ratios among many single- and
multiband superconductors from simple metals to high-Tc cuprates and iron
pnictides. Contrary to the recently suggested universality of this ratio in
Fe-based superconductors, we find that the coupling in pnictides ranges from
weak, near the BCS limit, to strong, as in cuprates, bridging the gap between
these two extremes. Moreover, for Fe- and Cu-based materials, our analysis
reveals a universal correlation between the gap ratio and Tc, which is not
found in conventional superconductors and therefore supports a common
unconventional pairing mechanism in both families. An important consequence of
this result for ferropnictides is that the separation in energy between the
excitonic spin-resonance mode and the particle-hole continuum, which determines
the resonance damping, no longer appears independent of Tc.Comment: 15 pages, 3 figures, 5 tables with an exhaustive overview of the
published gap and spin-resonance measurements in Fe-based superconductors.
New in V3: updated references. To be published in Phys. Rev.
Surface properties of SmB6 from x-ray photoelectron spectroscopy
We have investigated the properties of cleaved SmB single crystals by
x-ray photoelectron spectroscopy. At low temperatures and freshly cleaved
samples a surface core level shift is observed which vanishes when the
temperature is increased. A Sm valence between 2.5 - 2.6 is derived from the
relative intensities of the Sm and Sm multiplets. The B/Sm
intensity ratio obtained from the core levels is always larger than the
stoichiometric value. Possible reasons for this deviation are discussed. The B
signal shows an unexpected complexity: an anomalous low energy component
appears with increasing temperature and is assigned to the formation of a
suboxide at the surface. While several interesting intrinsic and extrinsic
properties of the SmB surface are elucidated in this manuscript no clear
indication of a trivial mechanism for the prominent surface conductivity is
found
One-Dimensional Dispersive Magnon Excitation in the Frustrated Spin-2 Chain System Ca3Co2O6
Using inelastic neutron scattering, we have observed a quasi-one-dimensional
dispersive magnetic excitation in the frustrated triangular-lattice spin-2
chain oxide Ca3Co2O6. At the lowest temperature (T = 1.5 K), this magnon is
characterized by a large zone-center spin gap of ~27 meV, which we attribute to
the large single-ion anisotropy, and disperses along the chain direction with a
bandwidth of ~3.5 meV. In the directions orthogonal to the chains, no
measurable dispersion was found. With increasing temperature, the magnon
dispersion shifts towards lower energies, yet persists up to at least 150 K,
indicating that the ferromagnetic intrachain correlations survive up to 6 times
higher temperatures than the long-range interchain antiferromagnetic order. The
magnon dispersion can be well described within the predictions of linear
spin-wave theory for a system of weakly coupled ferromagnetic chains with large
single-ion anisotropy, enabling the direct quantitative determination of the
magnetic exchange and anisotropy parameters.Comment: 7 pages, 6 figures including one animatio
- …