94 research outputs found
Magnetic Susceptibility of the Kagome Antiferromagnet ZnCu3(OH)6Cl2
We analyze the experimental data for the magnetic susceptibility of the
material ZnCu3(OH)6Cl2 in terms of the Kagome Lattice Heisenberg model (KLHM),
discussing possible role of impurity spins, dilution, exchange anisotropy, and
both out-of-plane and in-plane Dzyaloshinsky-Moriya (DM) anisotropies, with
explicit theoretical calculations using the Numerical Linked Cluster (NLC)
method and exact diagonalization (ED). The high-temperature experimental data
are well described by the pure Heisenberg model with J=170 K. We show that the
sudden upturn in the susceptibility around T=75 K is due to DM interactions. We
also observe that at intermediate temperatures, below T=J, our calculated
susceptibility for KLHM fits well with a power law T^{-0.25}.Comment: 4 pages, 5 figures, published versio
Polarized neutron scattering studies of the kagome lattice antiferromagnet KFe3(OH)6(SO4)2
We report polarized neutron scattering studies of spin-wave excitations and
spin fluctuations in the S=5/2 kagome lattice antiferromagnet KFe3(OH)6(SO4)2
(jarosite). Inelastic polarized neutron scattering measurements at 10 K on a
single crystal sample reveal two spin gaps, associated with in-plane and
out-of-plane excitations. The polarization analysis of quasi-elastic scattering
at 67 K shows in-plane spin fluctuations with XY symmetry, consistent with the
disappearance of the in-plane gap above the Neel temperature T_N = 65 K. Our
results suggest that jarosite is a promising candidate for studying the 2D XY
universality class in magnetic systems.Comment: 3 pages, 3 figures, Proceeding to the 7th International Workshop on
Polarized Neutrons for Condensed Matter Investigations and 2nd International
Symposium of Quantum Beam Science Directorat
A study of long range order in certain two-dimensional frustrated lattices
We have studied the Heisenberg antiferromagnets on two-dimensional frustrated
lattices, triangular and kagome lattices using linear spin-wave theory. A
collinear ground state ordering is possible if one of the three bonds in each
triangular plaquette of the lattice becomes weaker or frustrated. We study
spiral order in the Heisenberg model along with Dzyaloshinskii-Moriya (DM)
interaction and in the presence of a magnetic field. The quantum corrections to
the ground state energy and sublattice magnetization are calculated
analytically in the case of triangular lattice with nearesr-neighbour
interaction. The corrections depend on the DM interaction strength and the
magnetic field. We find that the DM interaction stabilizes the long-range
order, reducing the effect of quantum fluctuations. Similar conclusions are
reached for the kagome lattice. We work out the linear spin-wave theory at
first with only nearest-neighbour (nn) terms for the kagome lattice. We find
that the nn interaction is not sufficient to remove the effects of low energy
fluctuations. The flat branch in the excitation spectrum becomes dispersive on
addition of furthet neighbour interactions. The ground state energy and the
excitation spectrum have been obtained for various cases.Comment: 18 pages, 9 figure
Spin Dynamics of the Spin-1/2 Kagome Lattice Antiferromagnet ZnCu_3(OH)_6Cl_2
We have performed thermodynamic and neutron scattering measurements on the
S=1/2 kagome lattice antiferromagnet Zn Cu_3 (OH)_6 Cl_2. The susceptibility
indicates a Curie-Weiss temperature of ~ -300 K; however, no magnetic order is
observed down to 50 mK. Inelastic neutron scattering reveals a spectrum of low
energy spin excitations with no observable gap down to 0.1 meV. The specific
heat at low-T follows a power law with exponent less than or equal to 1. These
results suggest that an unusual spin-liquid state with essentially gapless
excitations is realized in this kagome lattice system.Comment: 4 pages, 3 figures; v2: Updates to authors list and references; v3:
Updated version; v4: Published versio
Dzyaloshinskii-Moriya interaction and spin re-orientation transition in the frustrated kagome lattice antiferromagnet
Magnetization, specific heat, and neutron scattering measurements were
performed to study a magnetic transition in jarosite, a spin-5/2 kagome lattice
antiferromagnet. When a magnetic field is applied perpendicular to the kagome
plane, magnetizations in the ordered state show a sudden increase at a critical
field H_c, indicative of the transition from antiferromagnetic to ferromagnetic
states. This sudden increase arises as the spins on alternate kagome planes
rotate 180 degrees to ferromagnetically align the canted moments along the
field direction. The canted moment on a single kagome plane is a result of the
Dzyaloshinskii-Moriya interaction. For H < H_c, the weak ferromagnetic
interlayer coupling forces the spins to align in such an arrangement that the
canted components on any two adjacent layers are equal and opposite, yielding a
zero net magnetic moment. For H > H_c, the Zeeman energy overcomes the
interlayer coupling causing the spins on the alternate layers to rotate,
aligning the canted moments along the field direction. Neutron scattering
measurements provide the first direct evidence of this 180-degree spin rotation
at the transition.Comment: 13 pages, 15 figure
Spin chirality on a two-dimensional frustrated lattice
The collective behavior of interacting magnetic moments can be strongly
influenced by the topology of the underlying lattice. In geometrically
frustrated spin systems, interesting chiral correlations may develop that are
related to the spin arrangement on triangular plaquettes. We report a study of
the spin chirality on a two-dimensional geometrically frustrated lattice. Our
new chemical synthesis methods allow us to produce large single crystal samples
of KFe3(OH)6(SO4)2, an ideal Kagome lattice antiferromagnet. Combined
thermodynamic and neutron scattering measurements reveal that the phase
transition to the ordered ground-state is unusual. At low temperatures,
application of a magnetic field induces a transition between states with
different non-trivial spin-textures.Comment: 7 pages, 4 figure
Slow Relaxation of Spin Structure in Exotic Ferromagnetic Phase of Ising-like Heisenberg Kagome Antiferromagnets
In the corner-sharing lattice, magnetic frustration causes macroscopic
degeneracy in the ground state, which prevents systems from ordering. However,
if the ensemble of the degenerate configuration has some global structure, the
system can have a symmetry breaking phenomenon and thus posses a finite
temperature phase transition. As a typical example of such cases, the magnetic
phase transition of the Ising-like Heisenberg antiferromagnetic model on the
kagome lattice has been studied. There, a phase transition of the
two-dimensional ferromagnetic Ising universality class occurs accompanying with
the uniform spontaneous magnetization. Because of the macroscopic degeneracy in
the ordered phase, the system is found to show an entropy-driven ordering
process, which is quantitatively characterized by the number of ``weathervane
loop''. We investigate this novel type of slow relaxation in regularly
frustrated system.Comment: 4 pages, 6 figure
Toward Perfection: Kapellasite, Cu3Zn(OH)6Cl2, a New Model S = 1/2 Kagome Antiferromagnet
The search for the resonating valence bond (RVB) state continues to underpin
many areas of condensed matter research. The RVB is made from the dimerisation
of spins on different sites into fluctuating singlets, and was proposed by
Anderson to be the reference state from which the transition to BCS
superconductivity occurs. Little is known about the state experimentally, due
to the scarcity of model materials. Theoretical work has put forward the S =
1/2 kagome antiferromagnet (KAFM) as a good candidate for the realization of
the RVB state. In this paper we introduce a new model system, the S = 1/2 KAFM
Kapellasite, Cu3Zn(OH)6Cl2. We show that its crystal structure is a good
approximation to a 2-dimensional kagome antiferromagnet and that susceptibility
data indicate a collapse of the magnetic moment below T = 25 K that is
compatible with the spins condensing into the non-magnetic RVB state.Comment: Communication, 3 pages, 3 figure
Recommended from our members
Co3(SO4)3(OH)2[enH2]: a newS= 3/2 Kagome-type layered sulfate with a unique connectivity
The Kagome lattice, comprising a two-dimensional array of corner-sharing equilateral triangles, is central to the exploration of magnetic frustration. In such a lattice, antiferromagnetic coupling between ions in triangular plaquettes prevents all of the exchange interactions being simultaneously satisfied and a variety of novel magnetic ground states may result at low temperature. Experimental realization of a Kagome lattice remains difficult. The jarosite family of materials of nominal composition AM3(SO4)2(OH)6 (A = monovalent cation; M= Fe3+, Cr3+), offers perhaps one of the most promising manifestations of the phenomenon of magnetic frustration in two dimensions. The magnetic properties of jarosites are however extremely sensitive to the degree of coverage of magnetic sites. Consequently, there is considerable interest in the use of soft chemical techniques for the design and synthesis of novel materials in which to explore the effects of spin, degree of site coverage and connectivity on magnetic frustration
Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry
In this paper we examine the role of crystal chemistry factors in creating
conditions for formation of magnetoelectric ordering in BiFeO3. It is generally
accepted that the main reason of the ferroelectric distortion in BiFeO3 is
concerned with a stereochemical activity of the Bi lone pair. However, the lone
pair is stereochemically active in the paraelectric orthorhombic beta-phase as
well. We demonstrate that a crucial role in emerging of phase transitions of
the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order
types belongs to the change of the degree of the lone pair stereochemical
activity - its consecutive increase with the temperature decrease. Using the
structural data, we calculated the sign and strength of magnetic couplings in
BiFeO3 in the range from 945 C down to 25 C and found the couplings, which
undergo the antiferromagnetic-ferromagnetic transition with the temperature
decrease and give rise to the antiferromagnetic ordering and its delay in
regard to temperature, as compared to the ferroelectric ordering. We discuss
the reasons of emerging of the spatially modulated spin structure and its
suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table
- …