636 research outputs found
The Radio-to-Submm Spectral Index as a Redshift Indicator
We present models of the 1.4 GHz to 350 GHz spectral index, alpha(350/1.4),
for starburst galaxies as a function of redshift. The models include a
semi-analytic formulation, based on the well quantified radio-to-far infrared
correlation for low redshift star forming galaxies, and an empirical
formulation, based on the observed spectrum of the starburst galaxies M82 and
Arp 220. We compare the models to the observed values of alpha(350/1.4) for
starburst galaxies at low and high redshift. We find reasonable agreement
between the models and the observations, and in particular, that an observed
spectral index of alpha(350/1.4) > +0.5 indicates that the target source is
likely to be at high redshift, z > 1. The evolution of alpha(350/1.4) with
redshift is mainly due to the very steep rise in the Raleigh-Jeans portion of
the thermal dust spectrum shifting into the 350 GHz band with increasing
redshift. We also discuss situations where this relationship could be violated.
We then apply our models to examine the putative identifications of submm
sources in the Hubble Deep Field, and conclude that the submm sources reported
by Hughes et al. are likely to be at high redshifts, z > 1.5.Comment: standard LATEX file plus 1 postscript figure. Added references and
revised figure. second figure revision. Final Proof version. to appear in
Astrophysical Journal Letter
Radio Observations of Infrared Luminous High Redshift QSOs
We present Very Large Array (VLA) observations at 1.4 GHz and 5 GHz of a
sample of 12 Quasi-stellar Objects (QSOs) at z = 3.99 to 4.46. The sources were
selected as the brightest sources at 250 GHz from the recent survey of Omont et
al. (2001). We detect seven sources at 1.4 GHz with flux densities, S_{1.4} >
50 microJy. These centimeter (cm) wavelength observations imply that the
millimeter (mm) emission is most likely thermal dust emission. The
radio-through-optical spectral energy distributions for these sources are
within the broad range defined by lower redshift, lower optical luminosity
QSOs. For two sources the radio continuum luminosities and morphologies
indicate steep spectrum, radio loud emission from a jet-driven radio source.
For the remaining 10 sources the 1.4 GHz flux densities, or limits, are
consistent with those expected for active star forming galaxies. If the radio
emission is powered by star formation in these systems, then the implied star
formation rates are of order 1e3 M_solar/year. We discuss the angular sizes and
spatial distributions of the radio emitting regions, and we consider briefly
these results in the context of co-eval black hole and stellar bulge formation
in galaxies.Comment: to appear in the A
XMM-Newton Observations of High Redshift Quasars
We report on our XMM observations of the high redshift quasars BR 2237--0607
(z=4.558) and BR 0351--1034 (z=4.351), together with 14 other z>4 objects found
in the XMM public archive. Contrary to former reports, we do not find high
redshift radio-loud quasars to be more absorbed than their radio-quiet
counterparts. We find that the optical to X-ray spectral index alpha-ox is
correlated with the luminosity density at 2500 A, but does not show a
correlation with redshift. The mean 2-10 keV power-law slope of the 9 high
redshift radio-quiet quasars in our sample for which a spectral analysis can be
performed is alpha-x1.23+-0.48, similar to alpha-x=1.19 found from the ASCA
observations of low redshift Narrow-Line Seyfert 1 galaxies (NLS1s), and
significantly different from alpha-x=0.78 found for low redshift Broad-Line
Seyfert galaxies. While the optical/UV spectra of low to high redshift quasars
look remarkably similar, we find a first indication of a difference in their
X-ray spectrum. The steep X-ray spectral index suggests high Eddington ratios
L/L_Edd. These observations give credence to the hypothesis of Mathur (2000)
that NLS1s are low luminosity cousins of high redshift quasars, both likely to
be in their early evolutionary stage.Comment: 25 pages, AJ, in press (Jan 2006
Sensitive Radio Observations of High Redshift Dusty QSOs
We present sensitive radio continuum imaging at 1.4 GHz and 4.9 GHz of seven
high redshift QSOs selected for having a 240 GHz continuum detection, which is
thought to be thermal dust emission. We detect radio continuum emission from
four of the sources: BRI 0952-0115, BR 1202-0725, LBQS 1230+1627B, and BRI
1335-0417. The radio source in BR 1202-0725 is resolved into two components,
coincident with the double mm and CO sources. We compare the results at 1.4 GHz
and 240 GHz to empirical and semi-analytic spectral models based on star
forming galaxies at low redshift. The radio-to-submm spectral energy
distribution for BR 1202-0725, LBQS 1230+1627B, and BRI 1335-0417 are
consistent with that expected for a massive starburst galaxy, with implied
massive star formation rates of order 1000 solar masses per year (without
correcting for possible amplification by gravitational lensing). The
radio-to-submm spectral energy distribution for BRI 0952-0115 suggests a
low-luminosity radio jet source driven by the AGN.Comment: 12 pages, Latex emulateapj format, including 1 table and 3 figures.
The Astrophysical Journal, to appear in the January 2000 issu
A Study of CO Emission in High Redshift QSOs Using the Owens Valley Millimeter Array
Searches for CO emission in high-redshift objects have traditionally suffered
from the accuracy of optically-derived redshifts due to lack of bandwidth in
correlators at radio observatories. This problem has motivated the creation of
the new COBRA continuum correlator, with 4 GHz available bandwidth, at the
Owens Valley Radio Observatory Millimeter Array. Presented here are the first
scientific results from COBRA. We report detections of redshifted CO(J=3-2)
emission in the QSOs SMM J04135+10277 and VCV J140955.5+562827, as well as a
probable detection in RX J0911.4+0551. At redshifts of z=2.846, z=2.585, and
z=2.796, we find integrated CO flux densities of 5.4 Jy km/s, 2.4 Jy km/s, and
2.9 Jy km/s for SMM J04135+10277, VCV J140955.5+562827, and RX J0911.4+0551,
respectively, over linewidths of Delta(V_{FWHM}) ~ 350 km/s. These
measurements, when corrected for gravitational lensing, correspond to molecular
gas masses of order M(H_2) ~ 10^{9.6-11.1} solar masses, and are consistent
with previous CO observations of high-redshift QSOs. We also report 3-sigma
upper limits on CO(3-2) emission in the QSO LBQS 0018-0220 of 1.3 Jy km/s. We
do not detect significant 3mm continuum emission from any of the QSOs, with the
exception of a tentative (3-sigma) detection in RX J0911.4+0551 of S_{3mm}=0.92
mJy/beam.Comment: 18 pages, 5 figures, 2 tables, accepted to ApJ. Changes made for
version 2: citations added, 2 objects added to Table 2 and Figure
Mid-J CO Emission in Nearby Seyfert Galaxies
We study for the first time the complete sub-millimeter spectra (450 GHz to
1550 GHz) of a sample of nearby active galaxies observed with the SPIRE Fourier
Transform Spectrometer (SPIRE/FTS) onboard Herschel. The CO ladder (from Jup =
4 to 12) is the most prominent spectral feature in this range. These CO lines
probe warm molecular gas that can be heated by ultraviolet photons, shocks, or
X-rays originated in the active galactic nucleus or in young star-forming
regions. In these proceedings we investigate the physical origin of the CO
emission using the averaged CO spectral line energy distribution (SLED) of six
Seyfert galaxies. We use a radiative transfer model assuming an isothermal
homogeneous medium to estimate the molecular gas conditions. We also compare
this CO SLED with the predictions of photon and X-ray dominated region (PDR and
XDR) models.Comment: Proceedings of the Torus Workshop 2012 held at the University of
Texas at San Antonio, 5-7 December 2012. C. Packham, R. Mason, and A.
Alonso-Herrero (eds.); 6 pages, 3 figure
350 Micron Dust Emission from High Redshift Objects
We report observations of a sample of high redshift sources (1.8<z<4.7),
mainly radio-quiet quasars, at 350 microns using the SHARC bolometer camera at
the Caltech Submillimeter Observatory. Nine sources were detected (>4-sigma)
and upper limits were obtained for 11 with 350 micron flux density limits
(3-sigma) in the range 30-125mJy. Combining published results at other
far-infrared and millimeter wavelengths with the present data, we are able to
estimate the temperature of the dust, finding relatively low values, averaging
50K. From the spectral energy distribution, we derive dust masses of a few 10^8
M_sun and luminosities of 4-33x10^{12} L_sun (uncorrected for any
magnification) implying substantial star formation activity. Thus both the
temperature and dust masses are not very different from those of local
ultraluminous infrared galaxies. For this redshift range, the 350 micron
observations trace the 60-100 micron rest frame emission and are thus directly
comparable with IRAS studies of low redshift galaxies.Comment: 5 pages, 2 PS figures. Accepted for publication in Astrophysical
Journal Letter
- …