21,663 research outputs found
GHZ-type and W-type entangled coherent states: generation and Bell-type inequality tests without photon counting
We study GHZ-type and W-type three-mode entangled coherent states. Both the
types of entangled coherent states violate Mermin's version of the Bell
inequality with threshold photon detection (i.e., without photon counting).
Such an experiment can be performed using linear optics elements and threshold
detectors with significant Bell violations for GHZ-type entangled coherent
states. However, to demonstrate Bell-type inequality violations for W-type
entangled coherent states, additional nonlinear interactions are needed. We
also propose an optical scheme to generate W-type entangled coherent states in
free-traveling optical fields. The required resources for the generation are a
single-photon source, a coherent state source, beam splitters, phase shifters,
photodetectors, and Kerr nonlinearities. Our scheme does not necessarily
require strong Kerr nonlinear interactions, i.e., weak nonlinearities can be
used for the generation of the W-type entangled coherent states. Furthermore,
it is also robust against inefficiencies of the single-photon source and the
photon detectors.Comment: 8 pages, 5 figures, to be published in Phys. Rev.
Classification of scale-free networks
While the emergence of a power law degree distribution in complex networks is
intriguing, the degree exponent is not universal. Here we show that the
betweenness centrality displays a power-law distribution with an exponent \eta
which is robust and use it to classify the scale-free networks. We have
observed two universality classes with \eta \approx 2.2(1) and 2.0,
respectively. Real world networks for the former are the protein interaction
networks, the metabolic networks for eukaryotes and bacteria, and the
co-authorship network, and those for the latter one are the Internet, the
world-wide web, and the metabolic networks for archaea. Distinct features of
the mass-distance relation, generic topology of geodesics and resilience under
attack of the two classes are identified. Various model networks also belong to
either of the two classes while their degree exponents are tunable.Comment: 6 Pages, 6 Figures, 1 tabl
Quantification of Macroscopic Quantum Superpositions within Phase Space
Based on phase-space structures of quantum states, we propose a novel measure
to quantify macroscopic quantum superpositions. Our measure simultaneously
quantifies two different kinds of essential information for a given quantum
state in a harmonious manner: the degree of quantum coherence and the effective
size of the physical system that involves the superposition. It enjoys
remarkably good analytical and algebraic properties. It turns out to be the
most general and inclusive measure ever proposed that it can be applied to any
types of multipartite states and mixed states represented in phase space.Comment: 4 pages, 1 figure, accepted for publication in Phys. Rev. Let
Facet Formation in the Negative Quenched Kardar-Parisi-Zhang Equation
The quenched Kardar-Parisi-Zhang (QKPZ) equation with negative non-linear
term shows a first order pinning-depinning (PD) transition as the driving force
is varied. We study the substrate-tilt dependence of the dynamic transition
properties in 1+1 dimensions. At the PD transition, the pinned surfaces form a
facet with a characteristic slope as long as the substrate-tilt is
less than . When , the transition is discontinuous and the critical
value of the driving force is independent of , while the transition
is continuous and increases with when . We explain these
features from a pinning mechanism involving a localized pinning center and the
self-organized facet formation.Comment: 4 pages, source TeX file and 7 PS figures are tarred and compressed
via uufile
Purification and detection of entangled coherent states
In [J. C. Howell and J. A. Yeazell, Phys. Rev. A 62, 012102 (2000)], a
proposal is made to generate entangled macroscopically distinguishable states
of two spatially separated traveling optical modes. We model the decoherence
due to light scattering during the propagation along an optical transmission
line and propose a setup allowing an entanglement purification from a number of
preparations which are partially decohered due to transmission. A purification
is achieved even without any manual intervention. We consider a nondemolition
configuration to measure the purity of the state as contrast of interference
fringes in a double-slit setup. Regarding the entangled coherent states as a
state of a bipartite quantum system, a close relationship between purity and
entanglement of formation can be obtained. In this way, the contrast of
interference fringes provides a direct means to measure entanglement.Comment: 9 pages, 6 figures, using Revtex
- …