101,366 research outputs found
Pairing versus phase coherence of doped holes in distinct quantum spin backgrounds
We examine the pairing structure of holes injected into two \emph{distinct}
spin backgrounds: a short-range antiferromagnetic phase versus a symmetry
protected topological phase. Based on density matrix renormalization group
(DMRG) simulation, we find that although there is a strong binding between two
holes in both phases, \emph{phase fluctuations} can significantly influence the
pair-pair correlation depending on the spin-spin correlation in the background.
Here the phase fluctuation is identified as an intrinsic string operator
nonlocally controlled by the spins. We show that while the pairing amplitude is
generally large, the coherent Cooper pairing can be substantially weakened by
the phase fluctuation in the symmetry-protected topological phase, in contrast
to the short-range antiferromagnetic phase. It provides an example of a non-BCS
mechanism for pairing, in which the paring phase coherence is determined by the
underlying spin state self-consistently, bearing an interesting resemblance to
the pseudogap physics in the cuprate.Comment: 9 pages, 6 figure
Hidden spin current in doped Mott antiferromagnets
We investigate the nature of doped Mott insulators using exact
diagonalization and density matrix renormalization group methods. Persistent
spin currents are revealed in the ground state, which are concomitant with a
nonzero total momentum or angular momentum associated with the doped hole. The
latter determines a nontrivial ground state degeneracy. By further making
superpositions of the degenerate ground states with zero or unidirectional spin
currents, we show that different patterns of spatial charge and spin
modulations will emerge. Such anomaly persists for the odd numbers of holes,
but the spin current, ground state degeneracy, and charge/spin modulations
completely disappear for even numbers of holes, with the two-hole ground state
exhibiting a d-wave symmetry. An understanding of the spin current due to a
many-body Berry-like phase and its impact on the momentum distribution of the
doped holes will be discussed.Comment: 9 pages, 9 figures, update second version including more data and
discussion adde
Non-Markovian coherence dynamics of driven spin boson model: damped quantum beat or large amplitude coherence oscillation
The dynamics of driven spin boson model is studied analytically by means of
the perturbation approach based on a unitary transformation. We gave the
analytical expression for the population difference and coherence of the two
level system. The results show that in the weak driven case, the population
difference present damped coherent oscillation (single or double frequency) and
the frequencies depend on the initial state. The coherence exhibit damped
oscillation with Rabi frequency. When driven field is strong enough, the
population difference exhibit undamped large-amplitude coherent oscillation.
The results easily return to the two extreme cases without dissipation or
without periodic driven.Comment: 15 pages,5 figure
Non-Markovian disentanglement dynamics of two-qubit system
We investigated the disentanglement dynamics of two-qubit system in
Non-Markovian approach. We showed that only the couple strength with the
environment near to or less than fine-structure constant 1/137, entanglement
appear exponential decay for a certain class of two-qubit entangled state.
While the coupling between qubit and the environment is much larger, system
always appears the sudden-death of entanglement even in the vacuum environment.Comment: 17 pages, 3 figure
- …
